Skip to main content
Log in

Microstructure and Corrosion Behavior of Electrodeposited Ni-Co-ZrC Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this present work, ZrC particles incorporated Ni-Co composite coatings were electrodeposited. The objective of this article is to study the influence of Co content on the microstructure and properties of Ni-Co-ZrC coatings. Pure Ni and Ni-ZrC coatings have also been electrodeposited for comparison. Surface morphology, chemical composition, microstructure, and microhardness of Ni-Co-ZrC coatings were characterized by scanning electron microscopy, energy dispersive spectrometer, x-ray diffractometer, and Vicker microhardness tester. The potentiodynamic polarization technique was applied to measure the corrosion behavior of the coatings. By increasing Co concentration in electrolyte, Co content of the coatings was modified from 0 to 80 wt.% and ZrC particles content of the coatings was reduced. As the Co content increased, the dominant phase structure was changed from face centered cubic to hexagonal close packed crystal structure. Surface morphology of the Ni-Co-ZrC coatings was changed from nodular to sharp corner structure, and finally branched morphology with increasing Co content of the coating. Among the electrodeposited coatings, Ni-Co-ZrC coating with 42 wt.% Co content exhibited the highest microhardness. The corrosion potential of the coating was shifted to more positive with increasing the Co content from 0 to 64 wt.%. The lowest corrosion rate of 4.507 × 10−7 g·h−1·cm−2 was found for Ni-Co-ZrC coating at the Co content of 75 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Wang, Y. Gao, Q. Xue, H. Liu, and T. Xu, Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits, Appl. Surf. Sci., 2005, 242, p 326–332

    Article  Google Scholar 

  2. Sh. Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, and J.A. Szpunar, Improving the Corrosion and Tribocorrosion Resistance of Ni-Co Nanocrystalline Coatings in NaOH Solution, Corros. Sci., 2009, 51, p 2371–2379

    Article  Google Scholar 

  3. L. Tian, J. Xu, and C. Qiang, The Electrodeposition Behaviors and Magnetic Properties of Ni-Co Films, Appl. Surf. Sci., 2011, 257, p 4689–4694

    Article  Google Scholar 

  4. A. Karpuz, H. Kockar, M. Alper, O. Karaagac, and M. Haciismailoglu, Electrodeposited Ni-Co Films From Electrolytes with Different Co Contents, Appl. Surf. Sci., 2012, 258, p 4005–4010

    Article  Google Scholar 

  5. A. Karpuz, H. Kockar, and M. Alper, Effect of Film Thickness on Properties of Electrodeposited Ni-Co Films, Appl. Surf. Sci., 2012, 258, p 5046–5051

    Article  Google Scholar 

  6. C. Ma, S.C. Wang, L.P. Wang, F.C. Walsh, and R.J.K. Wood, The Role of a Tribofilm and Wear Debris in the Tribological Behaviour of Nanocrystalline Ni-Co Electrodeposits, Wear, 2013, 306, p 296–303

    Article  Google Scholar 

  7. G. Heidari, H. Tavakoli, and S.M. Mousavi Khoie, Nano SiC-Nickel Composite Coatings from a Sulfamat Bath Using Direct Current and Pulsed Direct Current, J. Mater. Eng. Perform., 2010, 19, p 1183–1188

    Article  Google Scholar 

  8. W. Shao, D. Nabb, N. Renevier, I. Sherrington, Y. Fu, and J. Luo, Mechanical and Anti-corrosion Properties of TiO2 Nanoparticle Reinforced Ni Coating by Electrodeposition, J. Electrochem. Soc., 2012, 159, p 671–676

    Article  Google Scholar 

  9. L. Kodandarama, M. Krishna, H.N. Narasimha Murthy, and S.C. Sharma, Development and Characterization of Electrocodeposited Nickel-Based Composites Coatings, J. Mater. Eng. Perform., 2012, 21, p 105–113

    Article  Google Scholar 

  10. F. Xia, H. Xu, C. Liu, J. Wang, J. Ding, and C. Ma, Microstructures of Ni-AlN Composite Coatings Prepared by Pulse Electrodeposition Technology, Appl. Surf. Sci., 2013, 271, p 7–11

    Article  Google Scholar 

  11. S.A. Lajevardi, T. Shahrabi, and J.A. Szpunar, Synthesis of Functionally Graded Nano Al2O3-Ni Composite Coating by Pulse Electrodeposition, Appl. Surf. Sci., 2013, 279, p 180–188

    Article  Google Scholar 

  12. P. Narasimman, P. Pushpavanam, and V.M. Periasamy, Wear and Scratch Resistance Characteristics of Electrodeposited Nickel-Nano and Micro SiC Composites, Wear, 2012, 292, p 197–206

    Article  Google Scholar 

  13. G. Wu, N. Li, D. Zhou, and K. Mitsuo, Electrodeposited Co-Ni-Al2O3 Composite Coatings, Surf. Coat. Technol., 2004, 176, p 157–164

    Article  Google Scholar 

  14. L.M. Chang, H.F. Guo, and M.Z. An, Electrodeposition of Ni-Co/Al2O3 Composite Coating by Pulse Reverse Method Under Ultrasonic Condition, Wear, 2008, 62, p 3313–3315

    Google Scholar 

  15. M. Srivastava, V. Ezhil Selvi, V.K. William Grips, and K.S. Rajam, Influence of SiC Particle Size on the Structure and Tribological Properties of Ni-Co Composites, Surf. Coat. Technol., 2007, 202, p 310–318

    Article  Google Scholar 

  16. Y. Yang and Y.F. Cheng, Fabrication of Ni-Co-SiC Composite Coatings by Pulse Electrodeposition-Effects of Duty Cycle and Pulse Frequency, Surf. Coat. Technol., 2013, 216, p 282–288

    Article  Google Scholar 

  17. L. Shi, C.F. Sun, P. Gao, F. Zhou, and W.M. Liu, Electrodeposition and Characterization of Ni-Co-Carbon Nanotubes Composite Coatings, Surf. Coat. Technol., 2006, 200, p 4870–4875

    Article  Google Scholar 

  18. L. Shi, C. Sun, and W. Liu, Electrodeposited Nickel-Cobalt Composite Coating Containing MoS2, Appl. Surf. Sci., 2008, 254, p 6880–6885

    Article  Google Scholar 

  19. Y. Wang and Z. Xu, Nanostructured Ni-WC-Co Composite Coatings Fabricated by Electrophoretic Deposition, Surf. Coat. Technol., 2006, 200, p 3896–3902

    Article  Google Scholar 

  20. M. Srivastava, V.K. William Grips, and K.S. Rajam, Electrodeposition of Ni-Co Composites Containing Nano-CeO2 and Their Structure, Properties, Appl. Surf. Sci., 2010, 257, p 717–722

    Article  Google Scholar 

  21. L. Shi, C.F. Sun, F. Zhou, and W.M. Liu, Electrodeposited Nickel-Cobalt Composite Coating Containing Nano-Sized Si3N4, Mater. Sci. Eng., A, 2005, 397, p 190–194

    Article  Google Scholar 

  22. Meenu. Srivastava, V. Ezhil Selvi, V.K. William Grips, and K.S. Rajam, Corrosion Resistance and Microstructure of Electrodeposited Nickel-Cobalt Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3051–3060

    Article  Google Scholar 

  23. Y.H. You, C.D. Gu, X.L. Wang, and J.P. Tu, Electrodeposition of Ni-Co Alloys From a Deep Eutectic Solvent, Surf. Coat. Technol., 2012, 206, p 3632–3638

    Article  Google Scholar 

  24. B.R. Tian and Y.F. Cheng, Electrolytic Deposition of Ni-Co-Al2O3 Composite Coating on Pipe Steel for Corrosion/Erosion Resistance in Oil Sand Slurry, Electrochim. Acta, 2007, 53, p 511–517

    Article  Google Scholar 

  25. B. Ranjith and G. Paruthimal Kalaignan, Ni-Co-TiO2 Nanocomposite Coating Prepared by Pulse and Pulse Reversal Methods Using Acetate Bath, Appl. Surf. Sci., 2010, 257, p 42–47

    Article  Google Scholar 

  26. L. Shi, C. Sun, P. Gao, F. Zhou, and W. Liu, Mechanical Properties and Wear and Corrosion Resistance of Electrodeposited Ni-Co/SiC Nanocomposite Coating, Appl. Surf. Sci., 2006, 252, p 3591–3599

    Article  Google Scholar 

  27. B. Bakhit and A. Akbari, Effect of Particle Size and Co-deposition Technique on Hardness and Corrosion Properties of Ni-Co/SiC Composite Coatings, Surf. Coat. Technol., 2012, 206, p 4964–4975

    Article  Google Scholar 

  28. Z. Zhang, X. Wu, C. Jiang, and N. Ma, Electrodeposition of Ni Matrix Composite Coatings Containing ZrC Particles, Surf. Eng., 2014, 30, p 21–25

    Article  Google Scholar 

  29. N. Zech, E.J. Podlaha, and D. Landolt, Anomalous Codeposition of Iron Group Metals I. Experimental Results, J. Electrochem. Soc., 1999, 146, p 2886–2891

    Article  Google Scholar 

  30. N. Zech, E.J. Podlaha, and D. Landolt, Anomalous Codeposition of Iron Group Metals II. Mathematical Model, J. Electrochem. Soc., 1999, 146, p 2892–2900

    Article  Google Scholar 

  31. N. Guglielmi, Kinetics of the Deposition of Inert Particles From Electrolytic Baths, J. Electrochem. Soc., 1972, 119, p 1009–1012

    Article  Google Scholar 

  32. F. Hou, W. Wang, and H. Guo, Effect of the Dispersibility of ZrO2 Nanoparticles in Ni-ZrO2 Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings, Appl. Surf. Sci., 2006, 252, p 3812–3817

    Article  Google Scholar 

  33. B. Bahadormanesh and A. Dolati, The Kinetics of Ni-Co/SiC Composite Coatings Electrodeposition, J. Alloys. Compd., 2010, 504, p 514–518

    Article  Google Scholar 

  34. B. Bakhit and A. Akbari, Nanocrystalline Ni-Co Alloy Coatings: Electrodeposition Using Horizontal Electrodes and Corrosion Resistance, J. Coat. Technol. Res., 2013, 10, p 285–295

    Article  Google Scholar 

  35. T. Rabizadeh and S. Reza Allahkaram, Corrosion Resistance Enhancement of Ni-P Electroless Coatings by Incorporation of Nano-SiO2 Particles, Mater. Des., 2011, 32, p 133–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanhai Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jiang, C. & Ma, N. Microstructure and Corrosion Behavior of Electrodeposited Ni-Co-ZrC Coatings. J. of Materi Eng and Perform 23, 4065–4071 (2014). https://doi.org/10.1007/s11665-014-1178-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1178-2

Keywords

Navigation