Skip to main content
Log in

Precipitation Behavior of Pt2Mo-Type Superlattices in Hastelloy C-2000 Superalloy with Low Mo/Cr Ratio

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper focuses on the precipitation behavior of superlattices phases in new Hastelloy C-2000 alloy with low Mo/Cr ratio owing to their detrimental effects on both mechanical and corrosion-resistance properties of the alloys. The precipitation behavior of superlattices phases in the C-2000 alloy was investigated at 600 °C in the aging time range of 100-500 h. The results revealed that Pt2Mo-type superlattices phases have been precipitated after aging at 600 °C for 100 h. Typically, the Pt2Mo-type precipitated phases meet to a stoichiometric ratio of Ni2(Cr, Mo) in this alloy. As increasing aging time from 100 to 500 h, size of the phase increases from around 13 to 55 nm. Besides, morphology of the Ni2(Cr, Mo) precipitated phases changes from a lean to a fat ellipse with increasing aging time due to the effect of the Mo/Cr atomic ratio and alloying elements on transformation paths from disorder to order. In addition, solution temperature of the Pt2Mo-type superlattices is around 725 °C determined by differential scanning calorimetry method, which was significantly dependent on the heating rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert, Effects of Ageing Conditions on the Precipitates Evolution, Chromium Depletion and Intergranular Corrosion Susceptibility of AISI, 316L: Experimental and Modeling Results, Mater. Sci. Eng. A, 2004, 372, p 98–108

    Article  Google Scholar 

  2. H. Sahlaoui, H. Sidhom, and J. Philibert, Prediction of Chromium Depleted-Zone Evolution During Aging of Ni-Cr-Fe Alloys, Acta Mater., 2002, 50, p 1383–1392

    Article  Google Scholar 

  3. H.T. Lee and J.L. Wu, Intergranular Corrosion Resistance of Nickel-Based Alloy 690 Weldments, Corros. Sci., 2010, 52, p 1545–1550

    Article  Google Scholar 

  4. S. Dymeka, M. Wróbela, E. Stepniowskaa, and M. Dollár, Microstructure Stability and Mechanical Properties of an Age-Hardenable Ni-Mo-Cr Alloy Subjected to Long-Term Exposure to Elevated Temperature, Mater. Charact., 2010, 61, p 769–777

    Article  Google Scholar 

  5. S.K. Das and G. Thomas, The Metastable Phase Ni2Mo and the Initial Stages of Ordering in Ni-Mo Alloys, Phys. Status Solid A, 1974, 21, p 177–190

    Article  Google Scholar 

  6. H.M. Tawancy, Defomation Behavior of Ordered Ni-Mo and Ni-Mo-Cr Alloys, Scr. Metall. Mater., 1995, 32, p 2055–2060

    Article  Google Scholar 

  7. M. Kumar and V.K. Vasudevan, Mechanical Properties and Strengthening of a Ni-25Mo-8Cr Alloy Containing Ni2(Mo, Cr) Precipitates, Acta Mater., 1996, 44, p 4865–4880

    Article  Google Scholar 

  8. M. Kumar and V.K. Vasudevan, Defomation-Induced Pseudo-Twinning and a New Superstructure in Ni2Mo Precipitates Contained in a Ni-25Mo-8Cr Alloy, Acta Mater., 1996, 44, p 3575–3583

    Article  Google Scholar 

  9. M.K. Miller, I.M. Anderson, L.M. Pike, and D.L. Klarstrom, Microstructural Characterization of Haynes 242™ Alloy, Mater. Sci. Eng. A, 2002, 327, p 89–93

    Article  Google Scholar 

  10. S. Dymek, M. Dollar, and M. Farooqi, Optimization of Mechanical Properties of a Ni-Mo-Cr Alloy by Structural Modifications Induced by Changes in Heat Treatment, Mater. Sci. Eng. A, 2001, 319, p 284–289

    Article  Google Scholar 

  11. P.E.A. Turchi, L. Kaufman, and Z.K. Liu, Modeling of Ni-Cr-Mo Based Alloys: Part II-Kinetics, CALPHAD, 2007, 31, p 237–248

    Article  Google Scholar 

  12. K.S. Chan, Y.M. Pan, and Y.D. Lee, First-Principles Computations of Mechanical Properties of Ni2Cr and Ni2Mo, Metall. Mater. Trans. A, 2006, 37, p 523–537

    Article  Google Scholar 

  13. L. Karmazin, J. Krejčí, and J. Zeman, γ Phase and Ni2Cr-Type Long-Range Order in Ni-Rich Ni-Cr-Mo Alloys, Mater. Sci. Eng. A, 1994, 183, p 103–109

    Article  Google Scholar 

  14. P.E.A. Turchi, L. Kaufman, and Z.K. Liu, Modeling of Ni-Cr-Mo Based Alloys: Part I-Phase Stability, CALPHAD, 2006, 30, p 70–87

    Article  Google Scholar 

  15. H.M. Tawancy and M.O. Aboelfotoh, Application of Long-Range Ordering in the Synthesis of a Nanoscale Ni2(Cr, Mo) Superlattices with High Strength and High Ductility, Mater. Sci. Eng. A, 2009, 500, p 188–195

    Article  Google Scholar 

  16. H.C. Pai, M. Sundararaman, B.C. Maji, A. Biswas, and M. Krishnan, Influence of Mo Addition on the Solvus Temperature of Ni2(Cr, Mo) Phase in Ni2(Cr, Mo) Alloys, J. Alloys Compd., 2010, 491, p 159–164

    Article  Google Scholar 

  17. K.A. Green, M. Mclean, S. Olson, and J.J. Schirra, Formation of a Pt 2 Mo Type Phase in Long-Term Aged Inconel Alloy 686, TMS, 2000, p 813–820

  18. X.R. Zhang, Z. Dmitrij, and W.S. David, Characterization of Film Properties on the Ni-Cr-Mo Alloy C-2000, Electrochim. Acta, 2013, 89, p 814–822

    Article  Google Scholar 

  19. P. Jakupi, F. Wang, J.J. Noël, and D.W. Shoesmith, Corrosion Product Analysis on Crevice Corroded Alloy-22 Specimens, Corros. Sci., 2011, 53, p 1670–1679

    Article  Google Scholar 

  20. L. Karmazin, Lattice Parameter Studies of Structure Changes of Ni-Cr Alloys in the Region of Ni2Cr, Mater. Sci. Eng., 1982, 54, p 247–256

    Article  Google Scholar 

  21. M.J. Starnk, Analysis of Aluminium Based Alloys by Calorimetry: Quantitative Analysis of Reactions and Reaction Kinetics, Int. Mater. Rev., 2004, 49, p 191–226

    Article  Google Scholar 

  22. Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, and P.K. Liaw, Thermodynamic Modeling and Experimental Validation of the Fe-Al-Ni-Cr-Mo Alloy System, Mater. Lett., 2012, 71, p 36–40

    Article  Google Scholar 

  23. F. Hamdi and S. Asgari, Influence of Stacking Fault Energy and Short-Range Ordering on Dynamic Recovery and Work Hardening Behavior of Copper Alloys, Scr. Mater., 2010, 62, p 693–696

    Article  Google Scholar 

  24. V.I. Goman’kov, D.F. Litvin, A.A. Loshmanov, and B.G. Lyashchenko, On Ordering in Ni-Cr Alloys, Phys. Met. Metall., 1962, 14, p 133–135

    Google Scholar 

  25. M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tadaki, T. Saburi, S. Nenno, and H. Nishiyama, An Experimental Study on the Ordered Alloy Ni2Cr, Trans. JIM, 1969, 10, p 365–371

    Google Scholar 

  26. V.P. Kolotushkin, V.P. Kondrat’ev, A.V. Laushkin, and V.N. Rechitskii, Effect of Long-Term Aging on the Structural and Phase Stability and Properties of Nickel-Chromium Alloys, Met. Sci. Heat Treat., 2003, 45, p 7–10

    Google Scholar 

  27. M. Kumar and V.K. Vasudevan, Ordering Reactions in an Ni-25Mo-8Cr Alloy, Acta Mater., 1996, 44, p 1591–1600

    Article  Google Scholar 

  28. X.M. Li, J.W. Bai, P.P. Liu, Y.M. Zhu, X.S. Xie, and Q. Zhan, Coherent Ni2(Cr, Mo) Precipitates in Ni-21Cr-17Mo Superalloy, J. Alloys Compd., 2013, 559, p 81–86

    Article  Google Scholar 

  29. S. Dymek, M. Wróbel, M. Dollar, and M. Blicharski, Influence of Plastic Deformation and Prolonged Ageing Time on Microstructure of a Haynes 242 Alloy, J. Microsc., 2006, 224, p 24–26

    Article  Google Scholar 

  30. R. Hu, G.M. Cheng, J.Q. Zhang, J.S. Li, T.B. Zhang, and H.Z. Fu, First Principles Investigation on the Stability and Elastic Properties of Ni2Cr1−x M x (M = Nb, Mo, Ta, and W) Superlattices, Intermetallics, 2013, 33, p 60–66

    Article  Google Scholar 

  31. A. Verma, N. Wanderka, J.B. Singh, B. Kumar, and J. Banhart, Statistical Analysis of Composition Fluctuations and Short-Range Order in Stoichiometric Ni-Cr-Mo Alloys, Ultramicroscopy, 2013, 132, p 227–232

    Article  Google Scholar 

  32. H.M. Tawancy and M.O. Aboelfotoh, High Strength and High Ductility in a Nanoscale Superlattices of Ni2(Cr, Mo) Deformable by Twinning, Scr. Mater., 2008, 59, p 846–849

    Article  Google Scholar 

  33. X.W. Yang, J.S. Li, T.B. Zhang, R. Hu, X.Y. Xue, and H.Z. Fu, Role of Defect Structure on Hydrogenation Properties of Zr0.9Ti0.1V2 Alloy, Int. J. Hydrog. Energy, 2011, 36, p 9318–9323

    Article  Google Scholar 

  34. W.A. Soffa and D.E. Laughlin, Recent Experimental Studies of Continuous Transformations in Alloys: An Overview, Met. Soc. AIME, 1982, 44, p 159–183

    Google Scholar 

  35. W.A. Soffa and D.E. Laughlin, Decomposition and Ordering Processes Involving Thermodynamically First-Order Order → Disorder Transformations, Acta Metall., 1989, 37, p 3019–3028

    Article  Google Scholar 

  36. A.R.P. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G.B. Viswanathan, H.L. Fraser, and R. Banerjee, Mechanisms Related to Different Generations of γ′ Precipitation During Continuous Cooling of a Nickel Base Superalloy, Acta Mater., 2013, 61, p 280–293

    Article  Google Scholar 

  37. G.B. Viswanathan, R. Banerjee, A. Singh, S. Nag, J. Tiley, and H.L. Fraser, Precipitation of Ordered Phases in Metallic Solid Solutions: A Synergistic Clustering and Ordering Process, Scr. Mater., 2011, 65, p 485–488

    Article  Google Scholar 

  38. Y.P. Zeng, L.Z. Kou, and X.S. Xie, Influence of Thermal Exposure on the Precipitates and Mechanical Properties of a Newly Developed Ni-21Cr-17Mo Alloy, Mater. Sci. Eng. A, 2013, 560, p 611–617

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (No. 2013AA031004), the National Natural Science Foundation of China (No. 51171150), and the Program of Introducing Talents of Discipline to Universities (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Hu, R., Zhang, T. et al. Precipitation Behavior of Pt2Mo-Type Superlattices in Hastelloy C-2000 Superalloy with Low Mo/Cr Ratio. J. of Materi Eng and Perform 23, 3314–3320 (2014). https://doi.org/10.1007/s11665-014-1126-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1126-1

Keywords

Navigation