Skip to main content
Log in

Materials Selection for Superheater Tubes in Municipal Solid Waste Incineration Plants

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400 °C, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 €/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for long-term selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 €/kg) compared to Ni-alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.G. Wright and H.H. Krause, Assessment of Factors Affecting Boiler Tube Lifetime in Waste-Fired Steam Generators: New Opportunities for Research and Technology Development, ASME, New York, 1994, p 1–112

    Google Scholar 

  2. H.J. Grabke, E. Reese, and M. Spiegel, The Effects of Chlorides, Hydrogen Chloride, and Sulfur Dioxide in the Oxidation of Steels Below Deposits, Corros. Sci., 1995, 37, p 1023–1043

    Article  Google Scholar 

  3. Y.S. Lia, M. Spiegel, and S. Shimada, Corrosion Behaviour of Various Model Alloys with NaCl-KCl Coating, Mater. Chem. Phys., 2005, 93, p 217–223

    Article  Google Scholar 

  4. A. Zahs, M. Spiegel, and H.J. Grabke, Chloridation and Oxidation of Iron, Chromium, Nickel and Their Alloys in Chloridizing and Oxidizing Atmospheres at 400-700°C, Corros. Sci., 2000, 42, p 1093–1122

    Article  Google Scholar 

  5. Y. Kawahara, High-Temperature Corrosion Mechanisms of Fe-Based Alloys in NaCl Containing Atmospheres, Corros. Sci., 2002, 44, p 223–245

    Article  Google Scholar 

  6. M. Morales, J.M. Chimenos, F. Espiell, and M. Segarra, The Effect of Temperature on Mechanical Properties of Oxide Scales Formed on a Carbon Steel in a Simulated Municipal Solid Waste Incineration Environment, Surf. Coat. Technol., 2014, 238, p 51–57

    Article  Google Scholar 

  7. J. Stringer, Performance Limitations in Electric Power Generating Systems Imposed by High Temperature Corrosion, High Temp. Technol., 1985, 3, p 119–134

    Google Scholar 

  8. D.B. Meadowcroft, Some Critical Industrial Requirements and Experience Related to High-Temperature Corrosion, Mater. Sci. Eng. A, 1989, 121, p 669–675

    Article  Google Scholar 

  9. H.H. Krause, Effects of Flue-Gas Temperature and Composition on Corrosion from Refuse Firing, Corrosion NACE International, 1991, 242, p 6-10

  10. Y. Kawahara, Recent Trends in Development and Application of High-temperature Corrosion-Resistant Materials and Coatings in High Efficiency Waste Incineration Boiler, MTERE2 41, 2002, p 190-194

  11. J. Wandschneider, U. Seiler, G. Hölter, and T. Wilmann, Increase of the Electrical Energy Efficiency to 30% Due to a High Performance Boiler—Example of HR-AVI-Amsterdam (Steigerung des elektrischen Wirkungsgrades bis 30% durch eine Hochleistungskesselanlage am Beispiel der HR-AVI-Amsterdam), Optimization in Thermal Waste Treatment (Optimierung der Abfallverbrennung) 1, K.J. Thomé-Kozmiensky and M. Beckmann, Ed., Neuruppin. TK Verland Karl Thomé-Kozmiensky, Neuruppin, 2005, p 1–15

    Google Scholar 

  12. Y. Kawahara, M. Nakamura, H. Tsuboi, and K. Yukawa, High Efficiency Waste-to-Energy Plants, Corrosion, 1998, 54, p 576–589

    Article  Google Scholar 

  13. P. Rademakers, W. Hesseling, and J. van de Wetering, Review on Corrosion in Waste Incinerators, and Possible Effects of bromine, TNO Industrial Technology, 2002, p 18-25

  14. W.T. Bakker, The Effect of Chlorine on Mixed Oxidant Corrosion of Stainless Steels, Mater. High Temp., 1997, 14, p 197–205

    Google Scholar 

  15. M. Noguchi, H. Yakuwa, M. Miyasaka, M. Yokono, A. Matsumoto, and K. Miyoshi, Experience of Superheater Tubes in Municipal Waste Incineration Plant, Mater. Corros., 2000, 51, p 774–785

    Article  Google Scholar 

  16. E.P. Latham, D.B. Meadowcroft, and L. Pinder, Coextrusion Cladding for Oxidation Protection, Mater. Sci. Technol., 1989, 5, p 813–815

    Article  Google Scholar 

  17. U. Brill and G.K. Grossmann, Corrosion Behavior of Weld Overlays of the New Alloy 50, Corrosion, 2001, 170, p 11–16

    Google Scholar 

  18. J. Stringer, Coatings in the Electricity Supply Industry: Past, Present, and Opportunities for the Future, Surf. Coat. Technol., 1998, 1, p 108–109

    Google Scholar 

  19. S.T. Bluni and A.R. Marder, Effects of Thermal Spray Coating Composition and Microstructure on Coating Response and Substrate Protection at High Temperatures, Corrosion, 1996, 52, p 213–218

    Article  Google Scholar 

  20. M.S. Brennan and R.C. Gassmann, Laser Cladding of Nickel and Iron Base Alloys on Boiler Waterwall Panels and Tubes, Corrosion, 2000, 235, p 26–31

    Google Scholar 

  21. J.R. Hayes, J. Gray, A.W. Szmodis, and C.A. Orme, Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys, J. Electrochem. Soc., 2005, 62, p 491–494

    Google Scholar 

  22. K. Nakagawa, Y. Matsunaga, and K. Yukawa, An Electrochemical Investigation of Corrosion of Superheater Tube in Waste Incineration Environment, Corrosion, NACE International, 1997, p 1–10

  23. H. Lefaix-Jeuland, L. Marchetti, S. Perrin, M. Pijolat, M. Sennour, and R. Molins, Oxidation Kinetics and Mechanisms of Ni-Alloys in Pressurised Water Reactor Conditions: Influence of Subsurface Defects, Corros. Sci., 2011, 53, p 3914–3922

    Article  Google Scholar 

  24. T. Ishitsuka and K. Nose, Solubility Study on Protective Oxide Films in Molten Chlorides Created by Refuse Incineration Environment, Mater. Corros., 2000, 51, p 177–181

    Article  Google Scholar 

  25. A. Nishitasanwichka and S. Haruyama, Electrochemical Monitoring of the Corrosion of Ni, Fe, and Their Alloys in Molten Salts, Corrosion, 1986, 42, p 578–584

    Article  Google Scholar 

  26. M.F. Ashby, Multi-objective Optimisation in Material Design and Selection, Acta Mater., 2000, 48, p 359–369

    Article  Google Scholar 

  27. K.L. Edwards, Designing of Engineering Components for Optimal Materials and Manufacturing Process Utilization, Mater. Des., 2003, 24(5), p 355–366

    Article  Google Scholar 

  28. M.F. Ashby, Y.J.M. Bréchet, D. Cebona, and L. Salvo, Selection Strategies for Materials and Processes, Mater. Des., 2004, 25, p 51–67

    Article  Google Scholar 

  29. K.L. Edwards, Selecting Materials for Optimum Use in Engineering Components, Mater. Des., 2005, 26, p 469–473

    Article  Google Scholar 

  30. K.L. Edwards, Materials Influence on Design: A Decade of Development, Mater. Des., 2011, 32, p 1073–1080

    Article  Google Scholar 

  31. M.F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2005, p 8–160

    Google Scholar 

  32. CES Selector 2012 Software, Granta Design Ltd, Cambridge, 2012

  33. M.F. Ashby, H. Shercliff, and D. Cebon, Materials: Engineering, Science, Processing and Design, 2nd ed., Butterworth Heinemann, Oxford, 2010, p 203–224

    Google Scholar 

  34. G.E. Dieter and H.A. Kuhn, Handbook of Workability and Process Design, ASM International, Materials Park, OH, 2003

    Google Scholar 

  35. J. Olsson, A Stainless Steel for Condenser Tubes, UNS S32654, Avesta Sheffield AB, S-774 80 Avesta, Sweden, 2010, p 27-89

  36. G. Gemmel, Properties, Specifications and Experience of Welded Stainless Steel Pipes in the Grades UNS S31254, N08904, S32304, S31803 and S32750, M Sc. Metallurgy Manager Market Development Avesta Sandvik Tube AB 64421 Torshälla, Sweden, 2010

  37. Special Metals Corporation, A Comparison of the Properties of Corrosion-Resistant Alloys and Titanium: An Aid for Specifying Cost Effective Materials for Demanding Applications, Special Metals Corporation, 3200 Riverside Dr. Huntington, WV 25705-1771 USA, 2005

  38. S.A. McCoy, B.C. Puckett, and E.L. Hibner, High Performance Age-Hardenable Nickel Alloys Solve Problems in Sour Oil and Gas Service, Special Metals Corporation, 3200 Riverside Dr. Huntington, WV 25705-1771 USA, 2002

  39. J.R. Crum, L.E. Shoemaker, and S.D. Kiser, Special Alloys and Overmatching Welding Products Solve FGD Corrosion Problems, Special Metals Corporation, 3200 Riverside Dr. Huntington, WV 25705-1771 USA, 2010

  40. B.A. Baker, G.D. Smith, and L.E. Shoemaker, Performance of Commercial Alloys in Simulated Waste Incineration Environments, Special Metals Corporation, 3200 Riverside Dr. Huntington, WV 25705-1771 USA, 2010

  41. DIN 17175-79 standard: Seamless Steel Tubes for Elevated Temperatures, DIN Deutsches Institut für Normung e. V, 1979

  42. C.X. Li and T. Bell, Corrosion Properties of Plasma Nitrided AISI, 410 Martensitic Stainless Steel in 3.5% NaCl and 1% HCl Aqueous Solutions, Corros. Sci., 2006, 48, p 2036–2049

    Article  Google Scholar 

  43. M.J. Walter, Stainless Steel for Medical Applications, Adv. Mater. Process., 2006, 22, p 84–86

    Google Scholar 

  44. R.P. Anantatmula, S.J. Mayhan, and P.A. White, Microstructural Characterization of Advanced Ferrous Alloys Exposed to Liquid Sodium, Annual Technical Meeting of the International Metallographic Society, Houston, TX, USA, 1977

  45. N. Wanderka, V. Naundorf, J. Banhart, D. Mukherji, D. Del Genovesse, and J. Rodsier, Microstructural Characterization of Inconel 706 alloy, Surf. Interface Anal., 2004, 36, p 546–551

    Article  Google Scholar 

  46. D.J. Coates, B. Mortimer, and A. Hendry, The Oxidation and Corrosion Resistance of Nitrided Iron Alloys, Corros. Sci., 1982, 22, p 951–972

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank R. Nadal (General Manager of SIRUSA) and the SIRUSA Incineration Plant for useful discussions and for financing this work, and Mrs. Toffa Evans of the Language Services of the University of Barcelona for language revision. This study was also financed by the Spanish MICINN under the ENE2011-28269-C03-02 Project, and XaRMAE (Xarxa de Referència en Materials Avançats per l’Energia, Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, M., Chimenos, J.M., Fernández, A.I. et al. Materials Selection for Superheater Tubes in Municipal Solid Waste Incineration Plants. J. of Materi Eng and Perform 23, 3207–3214 (2014). https://doi.org/10.1007/s11665-014-1100-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1100-y

Keywords

Navigation