Skip to main content
Log in

Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. L. Mingguang, H. Richard, and E. Michael, Correlation of Physiochemical Changes in UV-Exposed Polyethylene Films Containing Various UV Stabilizers, Polym. Degrad. Stab., 1995, 49, p 151–161

    Article  Google Scholar 

  2. A. Valenza and F.P.L. Mantia, Recycling of Polymer Waste: Part I-Photooxidised Polypropylene, Polym. Degrad. Stab., 1987, 19, p 135–146

    Article  Google Scholar 

  3. A. Rivaton, S. Cambon, and J.L. Gardette, Radiochemical Ageing of Ethylene Propylene Diene Elastomers. 4. Evaluation of Some Anti-Oxidants, Polym. Degrad. Stab., 2006, 91, p 136–143

    Article  Google Scholar 

  4. J.R. White and A. Turnbull, Weathering of Polymers: Mechanism of Degradation and Stabilization, Testing Strategies and Modeling, J. Mater. Sci., 1994, 29, p 13–584

    Google Scholar 

  5. C. Sadrmohaghegh, G. Scott, and E. Setoudeh, Effects of Reprocessing on Polymers—Part III: Photo-Oxidation of Polyethylene-Polypropylene Blends, Polym. Degrad. Stab., 1981, 3, p 469–476

    Article  Google Scholar 

  6. P.K. Roy, P. Surekha, C. Rajagopal, S.N. Chatterjee, and V. Choudhary, Studies on the Photo-Oxidative Degradation of LDPE Films in the Presence of Oxidised Polyethylene, Polym. Degrad. Stab., 2007, 92, p 1151–1160

    Article  Google Scholar 

  7. S. Rouif, Radiation Cross-Linked Polymers: Recent Developments and New Applications, Nucl. Instrum. Methods Phys. Res., 2005, 236, p 68–72

    Article  Google Scholar 

  8. M. Zhang, D.T. Lynch, and S.E. Wanke, Effect of Molecular Structure Distribution on Melting and Crystallization Behavior of 1-Butene/Ethylene Copolymers, Polymer, 2001, 42, p 3067–3075

    Article  Google Scholar 

  9. S. Bensason, J. Minick, A. Moet, S. Chum, A. Hiltner, and E. Baer, Classification of Homogeneous Ethylene-Octene Copolymers Based on Comonomer Content, J. Polym. Sci.: Polym. Phys., 1996, 34, p 1301–1315

    Article  Google Scholar 

  10. P. Starck, P. Lehmus, and V. Seppala, Thermal and Mechanical Analysis of Metallocene-Catalyzed Ethene-α-Olefin Copolymers: The Influence of the Length and Number of the Crystallizing Side Chains, J. Polym. Sci.: Polym. Chem., 2006, 44, p 1600–1612

    Article  Google Scholar 

  11. C. Wang, M.C. Chu, T.L. Lin, S.M. Lai, H.H. Shih, and J.C. Yang, Microstructures of a Highly Short-Chain Branched Polyethylene, Polymer, 2001, 42, p 1733–1741

    Article  Google Scholar 

  12. P.S. Chum, W.J. Kruper, and M.J. Guest, Materials Properties Derived from INSITE Metallocene Catalysts, Adv. Mater., 2002, 12, p 1759–1767

    Article  Google Scholar 

  13. J. Li, R.A. Shanks, and Y.J. Long, Miscibility and Crystallization of Metallocene Polyethylene Blends with Polypropylene, J. Appl. Polym. Sci., 2003, 87, p 1179–1189

    Article  Google Scholar 

  14. Q.Q. Ke, X.Y. Huang, P. Wei, G.L. Wang, and P.K. Jiang, Thermal, Mechanical, and Dielectric Behaviors of Crosslinked Linear Low Density Polyethylene/Polyolefin Elastomers Blends, J. Appl. Polym. Sci., 2007, 104, p 1920–1927

    Article  Google Scholar 

  15. W. Zhong, X. Qiao, K. Sun, G. Zhang, and X.J. Chen, Polypropylene-Clay Blends Compatibilized with MAH-g-POE, J. Appl. Polym. Sci., 2006, 2006, p 2558–2564

    Article  Google Scholar 

  16. J. Zhang, L. Wang, and Y. Zhao, Improving Performance Of Low-Temperature Hydrogenated Acrylonitrile Butadiene Rubber Nanocomposites by Using Nano-Clays, Mater. Des., 2013, 50, p 322–331

    Article  Google Scholar 

  17. B.P. Panda, S. Mohanty, and S.K. Nayak, Plasticty/Damage Coupling in Fibrillar Silicate-Reinforced Polypropylene/Ethylene-Octene Copolymer Composite Under Strain-Controlled Loading: Correlation Between Micromechanical and Damage Behavior, J. Thermoplast. Compos. Mater., 2013. doi:10.1177/0892705713503851

  18. N.S. Allen, M. Edge, T. Corrales, A. Childs, C.M. Liauw, and F. Catalina, Ageing and Stabilisation of Filled Polymers: An Overview, Polym. Degrad. Stab., 1998, 61, p 183–199

    Article  Google Scholar 

  19. A. Galeski, in Polypropylene: An A–Z reference, ed. by J. Karger-Kocsis (Kluwer, Dordrecht, 1999), pp. 135–141

  20. F.S. Qureshi, M.B. Amin, A.G. Maadhah, and S.H. Hamid, Weather Induced Degradation of Linear Low Density Polyethylene: Mechanical Properties, J. Poly. Eng., 1990, 9, p 67–84

    Google Scholar 

  21. I.A. Hussein, Melt Miscibility and Mechanical Properties of Metallocene Linear Low-Density Polyethylene Blends with High-Density Polyethylene: Influence of Comonomer Type, Polym. Int., 2005, 54, p 1330–1336

    Article  Google Scholar 

  22. F. Benkhenafou, M. Chemingui, B. Fayolle, J. Verdu, A.K. Ferouani, and J.M. Lefebvre, Fracture Behaviour of a Polypropylene Film, Mater. Des., 2011, 32, p 1515–1519

    Article  Google Scholar 

  23. A. Tidjani, Photooxidation of Polypropylene Under Natural and Accelerated Weathering Conditions, J. Appl. Polym. Sci., 1997, 64, p 03–2497

    Article  Google Scholar 

  24. H. Yin and D. Chen, Hydrogen Bond Interaction in Poly(Acrylonitrile-co-methylacrylate)/Attapulgite Nanocomposites, Polym. Eng. Sci., 2010, 50, p 312–319

    Article  Google Scholar 

  25. F.C. Chiu, H.Z. Yen, and C.E. Lee, Characterization of PP/HDPE Blend-Based Nanocomposites Using Different Maleated Polyolefins as Compatibilizers, Polym. Test., 2010, 29, p 06–397

    Google Scholar 

  26. M.S. Rabello and J.R. White, The Role of Physical Structure and Morphology in the Photodegradation Behaviour of Polypropylene, Polym. Compos., 1996, 17, p 04–691

    Article  Google Scholar 

  27. L. Audouin, V. Langlois, J. Verdu, and J.C.M. De Bruijn, Role of Oxygen Diffusion in Polymer Ageing: Kinetic and Mechanical Aspects, J. Mater. Sci., 1994, 29, p 569–583

    Article  Google Scholar 

  28. J.W. Gillman, Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites, J. Appl. Clay Sci., 1999, 15, p 31–49

    Article  Google Scholar 

  29. A.P. Gupta, U.K. Saroop, and G. Gupta, Studies on the Photo-Oxidation of PP and PP/mLLDPE Blend Systems: Thermal Physicochemical, and Mechanical Behavior, J. Appl. Polym. Sci., 2007, 106, p 917–925

    Article  Google Scholar 

  30. W.R. Waldman and A.M. DePaoli, Thermo-Mechanical Degradation of Polypropylene, Low-Density Polyethylene and their 1:1 Blend, Polym. Degrad. Stab., 1998, 60, p 301–308

    Article  Google Scholar 

  31. A. Riga, D. Young, G. Mlachak, and P. Kovach, Thermoanalytical Evaluation of Readily Available Reference Polymers, J. Therm. Anal. Calorim., 1997, 49, p 425–435

    Article  Google Scholar 

  32. A.S. Araujo, V.J. Fernandes, and G.J.T. Fernandes, Thermogravimetric Kinetics of Polyethelyne Degradation Over Silicoaluminophosphate, Thermochim. Acta., 2002, 392, p 55–61

    Article  Google Scholar 

  33. Y. Hama, K. Hamanaka, H. Matsumoto, H. Kudoh, and T. Sasuga, Inhomogeneous Degradation of Polymers Irradiated by x-Ray, Gamma-Ray and Ion-Beam as Studied by Micro-FT-IR, Radiat. Phys. Chem., 1995, 46, p 819–822

    Article  Google Scholar 

  34. A.R. Bhattacharyya, T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, and R.E. Smalley, Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite, Polymer, 2003, 44, p 2373–2377

    Article  Google Scholar 

  35. A. Hassan, M.U. Wahit, and C.Y. Chee, Mechanical and morphological properties of PP/ NR/LLDPE ternary blend-Effect of HVA-2, Polym. Test., 2003, 22, p 281–291

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, B.P., Mohanty, S. & Nayak, S.K. Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties. J. of Materi Eng and Perform 23, 3229–3244 (2014). https://doi.org/10.1007/s11665-014-1066-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1066-9

Keyword

Navigation