Journal of Materials Engineering and Performance

, Volume 23, Issue 10, pp 3558–3566 | Cite as

The Effect of Nb and Ti on Structure and Mechanical Properties of 12Ni-25Cr-0.4C Austenitic Heat-Resistant Steel after Aging at 900 °C for 1000 h

  • Vahid Javaheri
  • Farzad Shahri
  • Mahyar Mohammadnezhad
  • Morteza Tamizifar
  • Masaab Naseri


Austenitic heat-resistant steels are particularly suitable for applications where service conditions comprise high temperature. The demand for better performance has motivated developments in these steels. In this work, Ti and Nb were added to austenitic heat-resistant steels, Fe-12Ni-25Cr-0.4C, wt.% simultaneously. Microstructural changes were studied via scanning electron microscopy equipped with energy dispersive spectrum (EDS), optical microscopy, and x-ray diffraction (XRD) in as-cast condition and after aging in 900 °C for 1000 h. Mechanical properties were measured using tensile tests, impact energy, and Vickers hardness. It was observed that by formation of NbC and TiC, the level of fragmentation of the chromium carbides increased, as a positive aspect for mechanical properties. XRD and EDS results show increasing the amount of Ti can inhibit G-phase transformation.


aging chromium carbide heat-resistant steel microstructural evolution 



The authors wish to thank Isfahan Casting Industries (ICI) for financial support.


  1. 1.
    L. Chen, X. Ma, L. Wang, and X. Ye, Effect of Rare Earth Element Yttrium Addition on Microstructures and Properties of a 21Cr-11Ni Austenitic Heat-Resistant Stainless Steel, Mater. Des., 2011, 32, p 2206–2212CrossRefGoogle Scholar
  2. 2.
    M. Karaminejad, E. Kordzadeh, and S. Ebrahimi, The Fracture Mechanism of an Austenitic Heat Resistant Steel in Copper Conventer Atmosphere, Int. J. ISSI, 2005, 2, p 31–36Google Scholar
  3. 3.
    S. Shi and J.C. Lippold, Microstructure Evolution During Service Exposure of Two Cast, Heat Resistant Stainless Steels—HP-Nb Modified and 20-32Nb, Mater. Charact., 2008, 59, p 1029–1040CrossRefGoogle Scholar
  4. 4.
    S. Latha, M.D. Mathew, P. Parameswaran, M. Nandagopal, and S.L. Mannan, Effect of Titanium on the Creep Deformation Behaviour of 14Cr-15Ni-Ti Stainless Steel, J. Nucl. Mater., 2011, 409, p 214–220CrossRefGoogle Scholar
  5. 5.
    C.R. Barrett, J.L. Lytton, and O.D. Sherby, Effect of Grain Size and Annealing Treatment on Steady State Creep of Copper, Trans. Met. Soc. AIME, 1967, 239, p 170–180Google Scholar
  6. 6.
    H.E. Evans, Mechanisms of Creep Fracture, Elsevier, London, 1984Google Scholar
  7. 7.
    T.L. Shinoda, M.B. Zaghloul, and Y. Kondo, Effect of Single and Combined Additions of Ti and Nb on the Structure and Strength of the Centrifugally Cast HK-40 Steel, Trans. Iron Steel. Inst. Jpn., 1978, 18, p 139–148Google Scholar
  8. 8.
    R.M.T. Borges and L.H. de Almeida, Microstructure of a Centrifugally Cast Modified-HP Steel Tube with Yttrium Additions, Acta Microsc. A, 1999, 8, p 251–252Google Scholar
  9. 9.
    F.C. Nunes, J. Dille, J.L. Delplancke, and L.H. de Almeida, Yttrium Addition to Heat-Resistant Cast Stainless Steel, Scr. Mater., 2006, 54, p 1553–1556CrossRefGoogle Scholar
  10. 10.
    A.F. Padilha, I.F. Machado, and R.L. Plaut, Microstructures and Mechanical Properties of Fe-15%Cr-15%Ni Austenitic Stainless Steels Containing Different Level of Niobium Addition Submitted to Various Processing Stages, J. Mater. Process. Technol., 2005, 170, p 89–96CrossRefGoogle Scholar
  11. 11.
    W. Haitao, Z.H. Qi, Y. Huashun, Z.H. Zhenya, C. Hongwei, and M. Guanghui, Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel, Trans. Tianjin Univ., 2009, 15, p 457–462CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y. Sun, Sh. Guan, X. Deng, and X. Yan, Effect of Titanium and Tungsten on the Structure and Properties of Heat Abrasion Resistant Steel, Mater. Sci. Eng. A, 2008, 478, p 214–220CrossRefGoogle Scholar
  13. 13.
    B. Piekarski, Effect of Nb and Ti Additions on Microstructure, and Identification of Precipitates in Stabilized Ni-Cr Cast Austenitic Steels, Mater. Charact., 2001, 47, p 181–186CrossRefGoogle Scholar
  14. 14.
    G.D. Barbabela, L.H. de Almeida, T.L. da Silveria, and I.L. May, Role of Nb in Modification the Microstructure of Heat Resistant Cast HP Steel, Mater. Charact., 1991, 26, p 193–197CrossRefGoogle Scholar
  15. 15.
    J. Laigo, F. Christien, R. Legall, F. Toncret, and F. Furtado, SEM, EDS, EPMA-WDS and EBSD Characterization of Carbides in Hp Type Heat Resistant Alloy, J. Mater. Charact., 2008, 17, p 1580–1585CrossRefGoogle Scholar
  16. 16.
    F.C. Nunes, L.H. de Almeida, J. Dille, J.L. Delpancke, and I. Le May, Microstructure Changes Caused by Yttrium Addition to NbTi-Modified Centrifugally Cast HP-Type Stainless Steels, Mater. Charact., 2007, 58, p 132–142CrossRefGoogle Scholar
  17. 17.
    B. Piekarski, Effect of Nb, Ti and Si Additions on the Liquidus and Solidus Temperature and Primary Microstructure Refinement in 0.3C-30Ni-18Cr Cast Steel, Mater. Charact., 2010, 61, p 181–186Google Scholar
  18. 18.
    M. Durand, The Microstructure of Steels and Cast Irons, Springer, Berlin, 2004CrossRefGoogle Scholar
  19. 19.
    R. Dehmolaei, M. Shamanian, and A. Kermanpur, Effect of Solution Annealing on Weldability of Aged Alloy 800/25Cr-35Ni Steel Dissimilar Welds, Sci. Technol. Weld. Join., 2008, 13, p 515–523CrossRefGoogle Scholar
  20. 20.
    X. Wu, J. Xing, H. Fu, and X. Zhi, Effect of Titanium on the Morphology of Primary M7C3 Carbides in Hypereutectic High Chromium White Iron, Mater. Sci. Eng. A, 2007, 457, p 180–185CrossRefGoogle Scholar
  21. 21.
    H. Chen, Z.Ch. Chang, J. Lu, and H. Lin, Effect of Niobium on Wear Resistance of 15%Cr White Cast Iron, Wear, 1993, 166, p 197–201CrossRefGoogle Scholar
  22. 22.
    X. Zhi, J. Xing, H. Fu, and Y. Gao, Effect of Titanium on the As-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Mater. Charact., 2008, 59, p 1221–1226CrossRefGoogle Scholar
  23. 23.
    S.R. Shatynski, The Thermochemistry of Transition Metal Carbides, Oxid. Met., 1979, 13, p 105–117CrossRefGoogle Scholar
  24. 24.
    E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron, Carbon, Silicon Systems, Part V, Compendium of Phase Diagram Data, AFML-TR-65-2, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, 1967Google Scholar
  25. 25.
    M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1936Google Scholar
  26. 26.
    F.D. Richardson, The Thermodynamics of Metallurgical Carbides and of Carbon in Iron, J. Iron Steel Inst., 1953, 175, p 33Google Scholar
  27. 27.
    W.A. Moffatt, The Handbook of Binary Phase Diagrams, General Electric, Schenectady, NY, 1976Google Scholar
  28. 28.
    A.M. Babakr, A. Al Ahmari, K. Al Jumayiah, and F. Habiby, Sigma Phase Formation of Cast Iron-Chromium-Nickel Alloys, J. Miner. Mater. Charact. Eng., 2008, 17, p 127–145Google Scholar
  29. 29.
    G.D. de Almeida, L.H. de Almeida, T.L. da Silveria, and I.L. May, Niobium Addition in HP Heat Resistant Cast Stainless Steels. Niobium Addition in HP Heat Resistant Cast Stainless Steels, Mater. Charact., 1992, 29, p 387–396CrossRefGoogle Scholar
  30. 30.
    R. Voicu, E. Andrieu, D. Poquillon, J. Furtado, and J. Lacaze, Microstructure Evolution of HP40-Nb Alloys During Aging Under Air at 1000°C, Mater. Charact., 2009, 60, p 1020–1027CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Vahid Javaheri
    • 1
    • 5
  • Farzad Shahri
    • 2
  • Mahyar Mohammadnezhad
    • 3
  • Morteza Tamizifar
    • 4
  • Masaab Naseri
    • 5
  1. 1.Department of Material EngineeringIran University of Industries and MinesTehranIran
  2. 2.Department of Advanced Materials and Renewable EnergyIranian Research Organization for Science and Technology (IROST)TehranIran
  3. 3.Department of Materials Science and EngineeringIslamic Azad University Najafabad BranchNajafabadIran
  4. 4.Department of Materials Science and EngineeringIran University of Science and TechnologyTehranIran
  5. 5.Research and Development DepartmentIsfahan Casting Industries (ICI)IsfahanIran

Personalised recommendations