Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires


Young’s moduli of superelastic NiTi wires in austenite and stress-induced martensite states were evaluated by three different experimental methods (tensile tests, in situ synchrotron x-ray diffraction, and dynamic mechanical analysis) and estimated via theoretical calculation from elastic constants. The unusually low value of the Young’s modulus of the martensite phase appearing in material property tables (<40 GPa) is generally ascribed in the literature to the fact that stress-driven martensitic transformation and/or twinning processes continue even beyond the transformation range and effectively decrease the value of the tangent modulus evaluated from macroscopic stress-strain curve. In this work, we claim that this low value is real in the sense that it corresponds to the appropriate combination of elastic constants of the B19′ martensite phase forming the polycrystalline wire. However, the Young’s modulus of the martensite phase is low only for wire loaded in tension, not for compression or other deformation modes. It is shown that the low value of the martensite Young’s modulus in tension is due to the combination of the unique coincidence of elastic anisotropy of the B19′ martensite characterized by the low elastic constant C55, austenite drawing texture, and strong martensite texture due to the martensite variant selection under tensile stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1. Accessed 2 April 2014

  2. 2.

    T. Alonso, D. Favier, G. Chagnon, P. Sittner, and Y. Liu, Dynamic Mechanical Spectroscopy of Nanograined Thin NiTi Wires, Proc. SMST, Prague, Czech Republic, 2013

  3. 3.

    P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L.I. Manosa, Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy, Acta Mater., 2005, 53, p 3643–3661

    Article  Google Scholar 

  4. 4.

    M. Landa, P. Sedlák, P. Šittner, H. Seiner, and V. Novák, Mater. Sci. Eng. A, 2007, 462, p 320–324

    Article  Google Scholar 

  5. 5.

    M.F.-X. Wagner and W. Windl, Lattice Stability, Elastic Constants and Macroscopic Moduli of NiTi Martensites from First Principles, Acta Mater., 2008, 56, p 6232–6245

    Article  Google Scholar 

  6. 6.

    P. Šesták, M. Černý, and J. Pokluda, Elastic Constants of Austenitic and Martensitic Phases of NiTi Shape Memory Alloy. In Recent Advances in Mechatronics 2008-2009, Springer, Berlin, 2009, p 1–6. ISBN 978-3-642-05021-3

    Google Scholar 

  7. 7.

    N. Hatcher, O.Yu. Kontsevoi, and A.J. Freeman, Role of Elastic and Shear Stabilities in the Martensitic Transformation Path of NiTi, Phys. Rev. B, 2009, 80, p 144203

    Article  Google Scholar 

  8. 8.

    P. Šittner, M. Landa, P. Lukáš, and V. Novák, R-Phase Transformation Phenomena in Thermomechanically Loaded NiTi Polycrystals, Mech. Mater., 2006, 38, p 475–492

    Article  Google Scholar 

  9. 9.

    V. Novák, G.N. Dayananda, P. Šittner, F.M. Fernandes, and K.K. Mahesh, On the Electric Resistance Variation of NiTi and NiTiCu SMA Wires in Thermomechanical Cyclic Tests, Mater. Sci. Eng. A, 2008, 481-482, p 127–133

    Article  Google Scholar 

  10. 10.

    A.P. Stebner, D.W. Brown, and L.C. Brinson, Young’s Modulus Evolution and Texture-Based Elastic-Inelastic Strain Partitioning During Large Uniaxial Deformations of Monoclinic Nickel-Titanium, Acta Mater., 2013, 61, p 1944–1956

    Article  Google Scholar 

  11. 11.

    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Microstructure Changes During Non-conventional Heat Treatment of Thin Ni-Ti Wires by Pulsed Electric Current Studied by Transmission Electron Microscopy, Acta Mater., 2010, 58, p 4503–4515

    Article  Google Scholar 

  12. 12.

    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater Sci., 2005, 50, p 511–678

    Article  Google Scholar 

  13. 13.

    K.F. Hane and T.W. Shield, Microstructure in the Cubic to Monoclinic Transition in Titanium-Nickel Shape Memory Alloys, Acta Mater., 1999, 47(9), p 2603–2617

    Article  Google Scholar 

  14. 14.

    H. Titrian, U. Aydin, M. Friák, D. Ma, D. Raabe, and J. Neugebauer, Self-Consistent Scale-Bridging Approach to Compute the Elasticity of Multi-Phase Polycrystalline Materials, Mater. Res. Soc. Symp. Proc., 2013, 1524

  15. 15.

    G. Sheng, S. Bhattacharyya, H. Zhang, K. Chang, S.L. Shang, S.N. Mathaudhu, Z.K. Liu, and L.Q. Chen, Effective Elastic Properties of Polycrystals Based on Phase-Field Description, Mater. Sci. Eng. A, 2012, 554, p 67–71

    Article  Google Scholar 

  16. 16.

    M. Kamaya, A Procedure for Estimating Young’s Modulus of Textured Polycrystalline Materials, Int. J. Solids Struct., 2009, 46, p 2642–2649

    Article  Google Scholar 

  17. 17.

    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Yu.I. Chumlyakov, and M. Asai, A Comparative Study of Elastic Constants of Ti-Ni-Based Alloys Prior to Martensitic Transformation, Mater. Sci. Eng., 2001, A312, p 196–206

    Article  Google Scholar 

  18. 18.

    A.P. Stebner, D.W. Brown, and L.C. Brinson, Measurement of Elastic Constants of Monoclinic Nickel-Titanium and Validation of First Principles Calculations, Appl. Phys. Lett., 2013, 102, p 211908

    Article  Google Scholar 

  19. 19.

    P. Šittner, P. Lukáš, V. Novák, M.R. Daymond, and G.M. Swallowe, In-Situ Neutron Diffraction Studies of Martensitic Transformations in NiTi Polycrystals Under Tension and Compression Stress, Mater. Sci. Eng. A, 2004, 378(1-2), p 97–104

    Article  Google Scholar 

  20. 20.

    S. Rajagopalan, Al. Little, M.A.M. Bourke, and R. Vaidyanathan, Elastic Modulus of Shape-Memory NiTi from In Situ Neutron Diffraction During Macroscopic Loading, Instrumented Indentation, and Extensometry, Appl. Phys. Lett., 2005, 86(8), p 081901

Download references


This research has been supported from the Research Projects P107/12/0800, GA14-36566G, P108/12/P111 and GA14-15264S of the Grant Agency of the Czech Republic.

Author information



Corresponding author

Correspondence to Petr Šittner.

Additional information

This article is an invited paper selected from presentations at the International Conference on Shape Memory and Superelastic Technologies 2013, held May 20-24, 2013, in Prague, Czech Republic, and has been expanded from the original presentation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Šittner, P., Heller, L., Pilch, J. et al. Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires. J. of Materi Eng and Perform 23, 2303–2314 (2014).

Download citation


  • mechanical
  • modeling and simulation
  • non-ferrous metals