The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets

Article

Abstract

This study investigates the bond strength of aluminum sheets subjected to the roll bonding process in the presence of multiwall carbon nanotubes (MWCNTs). The effects of MWCNTs dispersion, thickness reduction, weight fraction of MWCNTs at the interface, and rolling temperature on the bond strength of the commercial pure aluminum sheets are studied. The peeling test is used to evaluate the bond strength of aluminum sheets. Optical microscopy and scanning electron microscopy are also used to evaluate the surface conditions of the peeled surfaces. Results indicate that, compared to the spread method, using the solution dispersion method to disperse MWCNTs reduces aluminum sheet’s bond strength. Also, the presence of MWCNTs reduces the sheet’s bond strength compared to aluminum sheets at a constant thickness reduction. However, bond strength is increased with higher thickness reductions in the presence or absence of MWCNTs. It is also shown that increasing the entry temperature improves bond strength, but that bond strength enhancement is lower in aluminum-MWCNTs sheets than in aluminum-aluminum sheets.

Keywords

aluminum-MWCNT sheets bond strength multiwall carbon nanotubes roll bonding process 

References

  1. 1.
    S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56–58CrossRefGoogle Scholar
  2. 2.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287(5453), p 637–640CrossRefGoogle Scholar
  3. 3.
    C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composite, Mater. Sci. Eng. A, 2007, 444(1), p 138–145CrossRefGoogle Scholar
  4. 4.
    H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47(3), p 570–577CrossRefGoogle Scholar
  5. 5.
    D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu, and A. Agarwal, Dual Strengthening Mechanisms Induced by Carbon Nanotubes in Roll Bonded Aluminum Composites, Mater. Sci. Eng. A, 2009, 523(1–2), p 263–270CrossRefGoogle Scholar
  6. 6.
    S.R. Bakshi and A. Agarwal, An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49(2), p 533–544CrossRefGoogle Scholar
  7. 7.
    S. Salimi, H. Izadi, and A.P. Gerlich, Fabrication of an Aluminum-Carbon Nanotube Metal Matrix Composite by Accumulative Roll-Bonding, J. Mater. Sci., 2011, 46(2), p 409–415CrossRefGoogle Scholar
  8. 8.
    S. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites: A Review, Int. Mater. Rev., 2010, 55(1), p 41–64CrossRefGoogle Scholar
  9. 9.
    D. Chunfeng, Z. Xuexi, and W. Dezun, Chemical Stability of Carbon Nanotubes in the 2024Al Matrix, Mater. Lett., 2007, 61(3), p 904–907CrossRefGoogle Scholar
  10. 10.
    A.M.K. Esawi and M.A. El Borady, Carbon Nanotube-Reinforced Aluminium Strips, Compos. Sci. Technol., 2008, 68(2), p 486–492CrossRefGoogle Scholar
  11. 11.
    J. Wu, H. Zhang, Y. Zhang, and X. Wang, Mechanical and Thermal Properties of Carbon Nanotube/Aluminum Composites Consolidated by Spark Plasma Sintering, Mater. Des., 2012, 41, p 344–348CrossRefGoogle Scholar
  12. 12.
    L. Wang, H. Choi, J.M. Myoung, and W. Lee, Mechanical Alloying of Multi-walled Carbon Nanotubes and Aluminium Powders for the Preparation of Carbon/Metal Composites, Carbon, 2009, 47(15), p 3427–3433CrossRefGoogle Scholar
  13. 13.
    D. Lahiri, V. Singh, A.K. Keshri, S. Seal, and A. Agarwal, Carbon Nanotube Toughened Hydroxyapatite by Spark Plasma Sintering: Microstructural Evolution and Multiscale Tribological Properties, Carbon, 2010, 48(11), p 3103–3120CrossRefGoogle Scholar
  14. 14.
    T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming, Compos. A, 2009, 40(5), p 589–594CrossRefGoogle Scholar
  15. 15.
    Y. Wu and G.Y. Kim, Carbon Nanotube Reinforced Aluminum Composite Fabricated by Semi-solid Powder Processing, J. Mater. Process. Technol., 2011, 211(8), p 1341–1347CrossRefGoogle Scholar
  16. 16.
    A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Compos. A, 2007, 38(2), p 646–650CrossRefGoogle Scholar
  17. 17.
    C. Deng, X. Zhang, Y. Ma, and D. Wang, Fabrication of Aluminum Matrix Composite Reinforced with Carbon Nanotubes, Rare Met., 2007, 26(5), p 450–455CrossRefGoogle Scholar
  18. 18.
    R. Jamaati and M.R. Toroghinejad, Manufacturing of High-Strength Aluminum/Alumina Composite by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2010, 527(16), p 4146–4151CrossRefGoogle Scholar
  19. 19.
    R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, Application of Anodizing and CAR Processes for Manufacturing Al/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527(16), p 3857–3863CrossRefGoogle Scholar
  20. 20.
    N. Bay, Cold Welding Part II: Process Variation and Application, Met. Constr., 1986, 18(6), p 486–490Google Scholar
  21. 21.
    L.R. Vaidyanath, M. Nicholas, and D.R. Milner, Pressure Welding by Rolling, Br. Weld. J., 1959, 6, p 13–28Google Scholar
  22. 22.
    R. Jamaati and M.R. Toroghinejad, Effect of Al2O3 Nano-particles on the Bond Strength in CRB Process, Mater. Sci. Eng. A, 2010, 527(18), p 4858–4863CrossRefGoogle Scholar
  23. 23.
    M. Alizadeh and M. Paydar, Study on the Effect of Presence of TiH2 Particles on the Roll Bonding Behavior of Aluminum Alloy Strips, Mater. Des., 2009, 30(1), p 82–86CrossRefGoogle Scholar
  24. 24.
    C. Lu, K. Tieu, and D. Wexler, Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-sized SiO2 Particles, J. Mater. Process. Technol., 2009, 209(10), p 4830–4834CrossRefGoogle Scholar
  25. 25.
    M.A. Soltani, R. Jamaati, and M.R. Toroghinejad, The Influence of TiO2 Nano-particles on Bond Strength of Cold Roll Bonded Aluminum Strip, Mater. Sci. Eng. A, 2012, 550, p 367–374CrossRefGoogle Scholar
  26. 26.
    M. Rezayat and A. Akbarzadeh, Bonding Behavior of Al-Al2O3 Laminations During Roll Bonding Process, Mater. Des., 2012, 36, p 874–879CrossRefGoogle Scholar
  27. 27.
    T. Tabata, S. Masaki, and K. Azekura, Bond Criterion in Cold Pressure Welding of Aluminium, Mater. Sci. Technol., 1989, 5(4), p 377–381CrossRefGoogle Scholar
  28. 28.
    S. Hosseini, M. Hosseini, and H. Danesh Manesh, Bond Strength Evaluation of Roll Bonded Bi-layer Copper Alloy Strips in Different Rolling Conditions, Mater. Des., 2011, 32(1), p 76–81CrossRefGoogle Scholar
  29. 29.
    R. Jamaati and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng. A, 2010, 527(9), p 2320–2326CrossRefGoogle Scholar
  30. 30.
    P.X. Hou, S. Bai, Q.H. Yang, C. Liu, and H.M. Cheng, Multi-step Purification of Carbon Nanotubes, Carbon, 2002, 40(1), p 81–85CrossRefGoogle Scholar
  31. 31.
    R. Jamaati and M. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108CrossRefGoogle Scholar
  32. 32.
    R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2010, 31(10), p 4816–4822CrossRefGoogle Scholar
  33. 33.
    L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001CrossRefGoogle Scholar
  34. 34.
    ASTM, D1876-08, Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). 2001.Google Scholar
  35. 35.
    R. Jamaati and M.R. Toroghinejad, The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips, J. Mater. Eng. Perform., 2011, 20(2), p 191–197CrossRefGoogle Scholar
  36. 36.
    H. Danesh Manesh and A. Karimi Taheri, Study of Mechanisms of Cold Roll Welding of Aluminium Alloy to Steel Strip, Mater. Sci. Technol., 2004, 20(8), p 1064–1068CrossRefGoogle Scholar
  37. 37.
    M. Eizadjou, H. Danesh Manesh, and K. Janghorban, Investigation of Roll Bonding Between Aluminum Alloy Strips, Mater. Des., 2008, 29(4), p 909–913CrossRefGoogle Scholar
  38. 38.
    H.A. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 30, p 2s–10sGoogle Scholar
  39. 39.
    J.A. Cave and J.D. Williams, The Mechanisms of Cold Pressure Welding by Rolling, J. Inst. Met., 1975, 101, p 203–207Google Scholar
  40. 40.
    H. Granjon, Fundamentals of Welding Metallurgy, Abington Publishing, Abington, 1991CrossRefGoogle Scholar
  41. 41.
    J.M. Parks, Recrystallization Welding, Weld J., 1953, 32(9), p 209s–221sGoogle Scholar
  42. 42.
    H. Yan and J.G. Lenard, A Study of Warm and Cold Roll-Bonding of An Aluminium Alloy, Mater. Sci. Eng. A, 2004, 385(1), p 419–428CrossRefGoogle Scholar
  43. 43.
    M. Eizadjou, H. Danesh Manesh, and K. Janghorban, Mechanism of Warm and Cold Roll Bonding of Aluminum Alloy Strips, Mater. Des., 2009, 30(10), p 4156–4161CrossRefGoogle Scholar
  44. 44.
    V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, 2008, 46(6), p 833–840CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Mahmoud Samadzadeh
    • 1
  • Mohammad Reza Toroghinejad
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations