Skip to main content

Advertisement

Log in

Thermal Stability Study of Ultrafine Grained 304L Stainless Steel Produced by Martensitic Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An ultrafine grain 304L stainless steel with average grain size of about 650 nm was produced by martensitic process. 10 mm as-received sheets were 80% cold rolled in the temperature of −15 °C and then annealed at 700 °C for 300 min to obtain ultrafine grained microstructure. The results showed that the ultrafine grained 304L steel has yield strength of 720 MPa, tensile strength of about 920 MPa, and total elongation of 47% which is about twice that of coarse grain structure. The effect of annealing temperature (750-900 °C) on the grain growth kinetics was modeled by isothermal kinetics equation which resulted in the grain growth exponent (n) and activation energy for grain growth of 4.8 and 455 KJ/mol, respectively. This activation energy was also compared with those for other austenitic steels to better understanding of the nature of grain growth and atoms mobility during annealing. It was found that activation energy for grain growth is about twice higher than self-diffusion activation energy of austenite that is related to the Zener pinning effects of the second phase particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.R. Davis, ASM Specialty Handbook: Stainless Steel, ASM, Meterials Park, OH, 1994

    Google Scholar 

  2. L.P. Karjalainen, T. Taulavuori, M. Sellman, and A. Kyröläinen, Some Strengthening Methods for Austenitic Stainless Steels, Steel Res. Int., 2008, 79(6), p 404–412

    Google Scholar 

  3. A. Chabok and K. Dehghani, Effect of Processing Parameters on the Mechanical Properties of Interstitial Free Steel Subjected to Friction Stir Processing, J. Mater. Eng. Perform., 2013, 22, p 1324–1330

    Article  Google Scholar 

  4. D.J. Branagan, Enabling Factors Toward Production of Nanostructured Steel on an Industrial Scale, J. Mater. Eng. Perform., 2005, 14(1), p 5–9

    Article  Google Scholar 

  5. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater Sci. Eng. A, 2006, 441(1-2), p 1–17

    Article  Google Scholar 

  6. L. Jinlong and L. Hongyun, Comparison of Corrosion Properties of Passive Films Formed on Phase Reversion Induced Nano/Ultrafine-Grained 321 Stainless Steel, Appl. Surf. Sci., 2013, 280, p 124–131

    Article  Google Scholar 

  7. J. Ma, X. Yang, Q. Huo, H. Sun, J. Qin, and J. Wang, Mechanical Properties and Grain Growth Kinetics in Magnesium Alloy After Accumulative Compression Bonding, Mater. Des., 2013, 47, p 505–509

    Article  Google Scholar 

  8. C. Yue, L. Zhang, and H. Gao, Kinetic Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19(1), p 112–115

    Article  Google Scholar 

  9. M.T. Milan, W.W. Bose Filho, J.R. Tarpani, A.M.S. Malafaia, C.P.O. Silva, B.C. Pellizer, and L.E. Pereira, Pereira, Residual Stress Evaluation of AA2024-T3 Friction Stir Welded Joints, J. Mater. Eng. Perform., 2007, 16(1), p 86–92

    Article  Google Scholar 

  10. J. Ruiz, J.M. Atienza, and M. Elices, Residual Stresses in Wires: Influence of Wire Length, J. Mater. Eng. Perform., 2003, 12(4), p 480–489

    Article  Google Scholar 

  11. C. Sun, Y. Yang, Y. Liu, K.T. Hartwig, H. Wang, S.A. Maloy, T.R. Allen, and X. Zhang, Thermal Stability of Ultrafine Grained Fe-Cr-Ni Alloy, Mater Sci. Eng. A, 2012, 542, p 64–70

    Article  Google Scholar 

  12. S. Yao, L. Du, X. Liu, and G. Wang, Isothermal Growth Kinetics of Ultrafine Austenite Grains in a Nb-V-Ti Microalloyed Steel, J. Mater. Sci. Technol., 2009, 25(5), p 615–618

    Google Scholar 

  13. S.H. Lee, J.S. Choi, and D.Y. Yoon, The Dependence of Abnormal Grain Growth on Initial Grain Size in 316L Stainless Steel, Z. Metallkd., 2001, 92(7), p 655–662

    Google Scholar 

  14. T. Tsuchiyama, Y. Nakamura, H. Hidaka, and S. Takaki, Effect of Initial Microstructure on Superplasticity in Ultrafine Grained 18Cr-9Ni Stainless Steel, Mat. Trans., 2004, 45(7), p 2259–2264

    Article  Google Scholar 

  15. K. Nohara, Y. Ono, and N. Ohashi, Composition and Grain-Size Dependencies, J. Iron Steel Inst. Jpn., 1977, 63, p 212–222

    Google Scholar 

  16. A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, and H. Samaei Baghbadorani, Investigation of Cold Rolling Variables on the Formation of Strain-Induced Martensite in 201L Stainless Steel, Mater. Des., 2013, 46, p 49–53

    Article  Google Scholar 

  17. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater Sci. Eng. R, 2009, 65, p 39–104

    Article  Google Scholar 

  18. T. Fukuda, T. Kakeshita, and K. Kindo, Effect of High Magnetic Field and Uniaxial Stress at Cryogenic Temperatures on Phase Stability of Some Austenitic Stainless Steels, Mater Sci. Eng. A, 2006, 438–440, p 212–217

    Article  Google Scholar 

  19. A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng. A, 2008, 486, p 283–286

    Article  Google Scholar 

  20. F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, and R. Surkialiabad, Production of Nano/Submicron Grained AISI, 304L Stainless Steel Through the Martensite Reversion Process, Mater. Sci. Eng. A, 2010, 527, p 7334–7339

    Article  Google Scholar 

  21. K. Tomimura, S. Takaki, and Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ Int., 1991, 31, p 1431–1437

    Article  Google Scholar 

  22. B.R. Kumar, S. Sharma, and B. Mahato, Formation of Ultrafine Grained Microstructure in the Austenitic Stainless Steel and Its Impact on Tensile Properties, Mater. Sci. Eng. A, 2011, 528, p 2209–2216

    Article  Google Scholar 

  23. Y.M. Wang and E. Ma, Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals, Mater. Sci. Eng. A, 2004, 375–377, p 46–52

    Article  Google Scholar 

  24. B.R. Kumar and B. Raabe, Tensile Deformation Characteristics of Bulk Ultrafine-Grained Austenitic Stainless Steel Produced by Thermal Cycling, Scr. Mater., 2012, 66, p 634–637

    Article  Google Scholar 

  25. D.R. Askeland, P.P. Fulay, D.K. Bhattacharya, Essentials of Materials Science and Engineering, 2nd ed, Cengage Learning, 2009

  26. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyrolainen, Hall-Petch Behavior in Ultra-Fine-Grained AISI, 301LN Stainless Steel, Metall. Mater. Trans. A, 2007, 38, p 1202–1210

    Article  Google Scholar 

  27. M. Jafari, M.H. Enayati, M.H. Abbasi, and F. Karimzadeh, Thermal Stability and Structural Changes During Heat Treatment of Nanostructured Al2024 Alloy, J. Alloys Compd., 2009, 478, p 260–264

    Article  Google Scholar 

  28. M. Hoseini, M. Hamid Pourian, F. Bridier, H. Vali, J.A. Szpunar, and P.H. Bocher, Thermal Stability and Annealing Behavior of Ultrafine Grained Commercially Pure Titanium, Mater. Sci. Eng. A., 2012, 532, p 58–63

    Article  Google Scholar 

  29. N. Hosseini, M.H. Abbasi, F. Karimzadeh, and M.H. Enayati, Structural Evolution and Grain Growth Kinetics During Isothermal Heat Treatment of Nanostructured Al6061, Mater. Sci. Eng. A, 2009, 525, p 107–111

    Article  Google Scholar 

  30. C. Surnayarayana and C.C. Koch, Nanocrystalline Materials—Current Research and Future Directions, Hyperfine Interact., 2000, 130, p 5–44

    Article  Google Scholar 

  31. Y. Zhao, Y. Shi, W.Q. Cao, M.Q. Wang, and G. Xie, Kinetics of austenite grain growth in medium-carbon niobium-bearing steel, Zhejiang Univ. Sci. A (Appl. Phys. Eng.), 2011, 12(3), p 171–176

    Article  Google Scholar 

  32. H. Pous-Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite Grain Growth in a Nuclear Pressure Vessel Steel, Mater. Sci. Eng. A, 2013, 567, p 72–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sabooni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabooni, S., Karimzadeh, F. & Enayati, M.H. Thermal Stability Study of Ultrafine Grained 304L Stainless Steel Produced by Martensitic Process. J. of Materi Eng and Perform 23, 1665–1672 (2014). https://doi.org/10.1007/s11665-014-0924-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0924-9

Keywords

Navigation