Skip to main content
Log in

Investigation on the Recrystallization Mechanism in Warm-Rolled Ti-IF Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The nuclei orientation, the nucleation site at the early stage of recrystallization, and the growth mechanism of the nuclei have been studied by EBSD analysis in Ti-IF steel during direct annealing after warm rolling. It is concluded that the formation of the recrystallization texture is dominated by the oriented nucleation mechanism. The recrystallized nuclei with γ-orientation emerged preferentially at the beginning of recrystallization and preferred to form in the deformed bands with γ-orientation and on the boundaries between γ- and α-orientations. The recrystallized grains first consumed their neighboring γ-oriented matrix; and then consumed the α-oriented deformed bands at the late stage of recrystallization, leading to strong γ-fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.K. Ray, J.J. Jonas, and R.E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mater. Rev., 1994, 39(4), p 129-172

    Article  Google Scholar 

  2. M. Caul and V. Randle, Microtexture Analysis of Interstitial-Free Steel, Mater. Charact., 1997, 38, p 155-163

    Article  Google Scholar 

  3. W.B. Hutchinson, Development and Control of Annealing Textures in Low-Carbon Steels, Int. Met. Rev., 1984, 29(1), p 25-42

    Article  Google Scholar 

  4. G.H. Akbari, C.M. Sellars, and J.A. Whiteman, Microstructure Development during Warm Rolling of an IF Steel, Acta Mater., 1997, 45(12), p 5047-5058

    Article  Google Scholar 

  5. Saitoh H, Ushtoda K, Senuma T. Structural and Textural Evolution During Subsequent Annealing of Steel Sheet Hot-Rolling in α Phase. THERMEC’88, the Iron and Steel Institute of Japan, Tokyo, 1988, p 628-635

  6. Nakamura T, Esaka K. Development of Hot Rolled Steel Sheet with High R Value, International Conference on Physical Metallurgy of Thermo Mechanical Processing of Steels and Other Metals, THERMEC’88, the Iron and Steel Institute of Japan, Tokyo, 1988, p 644-651

  7. I. Samajdar, B. Verlinden, P. Vanhoutte et al., γ-Fibre Recrystallization Texture in IF-Steel: An Investigation on the Recrystallization Mechanisms, Mater. Sci. Eng. A, 1997, 238(2), p 343-350

    Article  Google Scholar 

  8. M. Kiaei, R. Chiron, and B. Bacroix, Investigation of Recrystallization Mechanisms in Steels During In Situ Annealing in a SEM, Scr. Mater., 1997, 36(6), p 659-666

    Article  Google Scholar 

  9. A. Samet-Meziou, A.L. Etter, T. Baudin et al., Relation Between the Deformation Sub-Structure After Rolling or Tension and the Recrystallization Mechanisms of an IF Steel, Mater. Sci. Eng. A, 2008, 473(1-2), p 342-354

    Article  Google Scholar 

  10. C.A.O. Shengquan, L.I. Youyuan, J. Zhang et al., EBSD Investigation on Oriented Nucleation in IF Steels, J. Mater. Sci. Techno1., 2007, 23(2), p 262-266

    Google Scholar 

  11. M.R. Barnett, Role of In-Grain Shear Bands in the Nucleation of 〈111〉//ND Recrystallization Texture in Warm Rolled Steel, ISIJ Int., 1998, 38(1), p 78-85

    Article  Google Scholar 

  12. Dong Nyung Lee, The Evolution of Recrystallization Textures from Deformation Textures, Scr. Metallurg. Mater., 1995, 32(10), p 1689-1694

    Article  Google Scholar 

  13. R.D. Doherty, D.A. Hughes, F.J. Humphreys et al., Current Issues in Recrystallization, Mater. Sci. Eng., 1997, A238(2), p 219-274

    Article  Google Scholar 

  14. F.J. Humphreys, M. Matherly, Recrystallization and Related Annealing Phenomena [M]. Elsevier Science Ltd. Publications, New York, 1995, p 173-178

  15. L.G. Schulz, A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter x-ray Spectrometer, J. Appl. Phys., 1949, 20, p 1030-1041

    Article  Google Scholar 

  16. R.J. Roe, Description of Crystallite Orientation in Polycrystalline Materials. IIIGeneral Solution to Pole Figure Inversion, J. Appl. Phys., 1965, 36(6), p 2024-2031

    Article  Google Scholar 

  17. A. Korbel and M. Sczerba, Strain Hardening of Copper Single Crystals at High Strains and Dynamical Recovery Processes, Acta Metall, 1982, 30(10), p 1961-1968

    Article  Google Scholar 

  18. W.B. Lee and K.C. Chan, A Criterion for the Prediction of Shear Band Angles in FCC Metals, Acta Metallurg. Mater., 1991, 39(3), p 411-417

    Article  Google Scholar 

  19. L. Kestens and J.J. Jonas, Modeling Texture Change During the Static Recrystallization of Interstitial Free Steels, Metallurg. Mater. Trans. A, 1996, 27A(1), p 155-164

    Article  Google Scholar 

  20. Y.Y. Tse, G.L. Liu, and B.J. Duggan, Deformation Banding and Nucleation of Recrystallization in IF Steel, Scr. Mater., 1999, 42(1), p 25-30

    Article  Google Scholar 

  21. I. Samajdar, B. Verlinden, and P. Vanhoutte, Texture Changes Through Grain Growth in Ti-Bearing IF-Steel Investigated by Orientation Imaging Microscopy and x-ray Diffraction, ISIJ Int., 1997, 37(10), p 1010-1016

    Article  Google Scholar 

  22. H. Magnusson, D. Juul Jensen, and B. Hutchinsson, Growth Rates for Different Texture Components During Recrystallization of IF Steel, Scr. Mater., 2001, 44(3), p 435-441

    Article  Google Scholar 

  23. D. Raabe, On the Orientation Dependence of Static Recovery in Low-Carbon Steels, Scr. Maetallurg. Mater., 1995, 33(5), p 735-740

    Article  Google Scholar 

  24. R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53, p 845-858

    Article  Google Scholar 

  25. N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Microstructure and Texture Evolution in Dual-Phase Steels: Competition Between Recovery, Recrystallization, and Phase Transformation, Mater. Sci. Eng., 2010, A527, p 4161-4168

    Article  Google Scholar 

  26. I.L. Dillamore, P.L. Morris, C.J.E. Smith et al., Transition Bands and Recrystallization in Metals, Proc. Royal Soc. Lond., 1972, 329(1579), p 405-420

    Article  Google Scholar 

  27. A.J. Deardo, Physical Metallurgy of Interstitial-Free Steels: Precipitates and Solutes. International Conference on the Processing, Microstructure and Properties of IF steels. Pittsburgh, PA. IF steels 2000 Proceedings, 2000, p 125-136

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China for financial support, under Grant No. 50104004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-hui Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Yh., Wang, Zd. & Wei, Lq. Investigation on the Recrystallization Mechanism in Warm-Rolled Ti-IF Steel. J. of Materi Eng and Perform 23, 1214–1222 (2014). https://doi.org/10.1007/s11665-014-0884-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0884-0

Keywords

Navigation