Skip to main content

Advertisement

Log in

Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0.2C Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Mertinger, E. Nagy, F. Tranta, and J. Sólyom, Strain-Induced Martensitic Transformation in Textured Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 481-482, p 718–722

    Article  Google Scholar 

  2. S. Oliver, T.B. Jones, and G. Fourlaris, Dual Phase Versus TRIP Strip Steels: Comparison of Dynamic Properties for Automotive Crash Performance, Mater. Sci. Technol., 2007, 23(4), p 423–431

    Article  Google Scholar 

  3. K. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima, Retained Austenite Characteristics and Tensile Properties in a TRIP Type Bainitic Sheet Steel, ISIJ Int., 2000, 40(9), p 902–908

    Article  Google Scholar 

  4. B.C. De Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4), p 285–303

    Article  Google Scholar 

  5. Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken, and F. Delannay, On the Measurement of the Nanohardness of the Constitutive Phases of TRIP-Assisted Multiphase Steels, Mater. Sci. Eng. A, 2002, 328(1-2), p 26–32

    Article  Google Scholar 

  6. L. Samek, E. De Moor, J. Penning, and B.C. De Cooman, Influence of Alloying Elements on the Kinetics of Strain-Induced Martensitic Nucleation in Low-Alloy Multiphase High-Strength Steels, Metall. Mater. Trans. A, 2006, 37(A), p 109–124

    Article  Google Scholar 

  7. D.D. Tjahjanto, A.S.J. Suiker, S. Turteltaub, P.E.J. Rivera Diaz del Castillo, and S. van der Zwaag, Micromechanical Predictions of TRIP Steel Behavior as a Function of Microstructural Parameters, Comput. Mater. Sci., 2007, 41(1), p 107–116

    Article  Google Scholar 

  8. S. Lee, S.-J. Lee, and B.C. De Cooman, Austenite Stability of Ultrafine-Grained Transformation-Induced Plasticity Steel with Mn Partitioning, Scr. Mater., 2011, 65(3), p 225–228

    Article  Google Scholar 

  9. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao, Enhanced Work-Hardening Behaviors and Mechanical Properties in Ultrafine-Grained Steels with Large-Fractioned Metastable Austenite, Scr. Mater., 2010, 63(8), p 815–818

    Article  Google Scholar 

  10. M.J. Merwin, Low-Carbon Manganese TRIP Steels, Mater. Sci. Forum, 2007, 539-543, p 4327–4332

    Article  Google Scholar 

  11. S. Lee, S.-J. Lee, S. Santhosh Kumar, K. Lee, and B.C. De Cooman, Localized Deformation in Multiphase Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42(A), p 3638–3651

    Article  Google Scholar 

  12. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metall. Mater Trans. A, 2011, 42(A), p 3691–3702

    Article  Google Scholar 

  13. R.L. Miller, Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels, Metall. Trans., 1972, 3, p 905–912

    Article  Google Scholar 

  14. O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-0.8Mn Steel, Trans. ISIJ, 1987, 27, p 570–579

    Article  Google Scholar 

  15. B. Mintz, Hot Dip Galvanising of Transformation Induced Plasticity and Other Intercritically Annealed Steels, Int. Mater. Rev., 2001, 46(4), p 169–197

    Article  Google Scholar 

  16. H.L. Yi, S.K. Ghosh, W.J. Liu et al., Non-Equilibrium Solidification and Ferrite in δ-TRIP Steel, Mater. Sci. Technol., 2010, 26(7), p 817–823

    Article  Google Scholar 

  17. S. Chatterjee, M. Murugananth, and H.K.D.H. Bhadeshia, δ TRIP Steel, Mater. Sci. Technol., 2007, 23(7), p 819–827

    Article  Google Scholar 

  18. E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite Stabilization Through Manganese Enrichment, Scr. Mater., 2011, 64(2), p 185–188

    Article  Google Scholar 

  19. A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S.B. Singh, Microstructural and Mechanical Characterization of C-Mn-Al-Si Cold-Rolled TRIP-Aided Steel, Mater. Sci. Eng. A, 2007, 445-446, p 549–557

    Article  Google Scholar 

  20. B.K. Jha, R. Avtar, V. Sagar Dwivedi et al., Structure-Property Correlation in Carbon Low Alloy High Strength Wire Rods/Wires Containing Retained Austenite, Trans. Indian Inst. Met., 1996, 49(3), p 133–142

    Google Scholar 

  21. M.J. Santofimia, T. Nguyen-Minh, L. Zhao et al., New Low Carbon Q&P Steels Containing Film-Like Intercritical Ferrite, Mater. Sci. Eng. A, 2010, 527, p 6429–6439

    Article  Google Scholar 

  22. H.R. Woehrle, W.R. Clough, and G.S. Ansell, Athermal Stabilization of Austenite, Trans. ASM, 1966, 59, p 784–803

    Google Scholar 

  23. R.W. Messler, G.S. Ansell, and V.I. Lizunov, The Effect of Quench Rate on the Ms Temperature and the Structure of an Fe-C and Fe-C-Ni Steel, Trans. ASM, 1969, 62(4), p 362–369

    Google Scholar 

  24. Z.H. Cai, H. Ding, X. Xue, and Q.B. Xin, Microstructure Evolution and Mechanical Properties of Hot-Rolled 11% Manganese TRIP Steel, Mater. Sci. Eng. A, 2013, 560, p 388–395

    Article  Google Scholar 

  25. H.F. Xu, J. Zhao, W.Q. Cao et al., Tempering Effects on the Stability of Retained Austenite and Mechanical Properties in a Medium Manganese Steel, ISIJ Int., 2012, 52(5), p 868–873

    Google Scholar 

  26. A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges, Evolution of Microstructure and Mechanical Properties of Medium Mn Steels During Double Annealing, Mater. Sci. Eng. A, 2012, 542, p 31–39

    Article  Google Scholar 

  27. Z.H. Cai, H. Ding, R.D.K. Misra, and H. Kong, Unique Serrated Flow Dependence of Critical Stress in a Hot-Rolled Fe-Mn-Al-C Steel, Scr. Mater., 2014, 71, p 5–8

    Article  Google Scholar 

  28. H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in Silicon Steels: A New Composition Property Approach II, Mater. Sci., 1983, 17(9), p 420–425

    Google Scholar 

  29. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling, Acta Mater., 2005, 53(20), p 5439–5447

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Foundation of China (No: 51031001) and Basic Scientific Research Foundation (No: N120602001). One of authors (R.D.K. Misra) acknowledges support from Center for Structural and Functional Materials, University of Louisiana at Lafayette, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Ding, H., Ying, Z. et al. Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0.2C Steel. J. of Materi Eng and Perform 23, 1131–1137 (2014). https://doi.org/10.1007/s11665-014-0866-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0866-2

Keywords

Navigation