Skip to main content
Log in

Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thin strips of medium- and high-strength age-hardening aluminium alloys are widely used in the automotive industry. Reducing their production costs caused by high energy consumption is an actual challenge. The implementation of the twin-roll casting technology is promising. However, mechanical properties of directly cast high-alloyed thin aluminium strips are oftentimes inadequate to standard specifications. In this work, the influence of a hot deformation following a twin-roll cast strip process on the mechanical properties and microstructure is investigated. For this study strips of age-hardening aluminium alloy EN AW-6082—manufactured at a laboratory scaled twin-roll caster—were single-pass rolled at temperatures of 420 °C and true strains of up to 0.5. The mechanical properties of the as-cast and by different strains hot deformed material in the soft-annealed and age-hardened states were characterized by tensile tests. The results reveal that the twin-roll cast material features the necessary strength properties, though it does not meet the standard requirements for ductility. Furthermore, the required minimum strain during hot rolling that is necessary to ascertain the standard specifications has been determined. Based on micrographs, the uniformity of the mechanical properties and of the microstructure as a result of recrystallization due to hot metal forming and heat treatment were determined. A fine-grain microstructure and satisfactory material ductility after prior rolling with a true strain above 0.41 for the age-hardened state T6 and above 0.1 for the soft-annealed state O have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aluminiumwalzprodukte im Klimaschutz (Rolled aluminum products for climate protection), Metall 1-2(66), 2012, p 30 (in German)

  2. V.M. Danchenko, A.A. Milenin, and O.M. Golovko, Proizvodstvo profilej iz alûminievyh splavov: Teoriâ i tehnologiâ (Profile production of aluminum alloys: Theory and Technology), Sistemnye Tehnologii, Dnepropetrovsk, 2002 ((in Russian))

    Google Scholar 

  3. M. Ferry, Direct Strip Casting of Metals and Alloys: Processing, Microstructure and Properties, CRC Press, Boca Raton, 2006

    Book  Google Scholar 

  4. O. Grydin, M. Schaper, and V. Danchenko, Twin-Roll Casting of High-Strength Age-Hardened Aluminium Alloys, Metall. Min. Ind., 2011, 7(3), p 7–16

    Google Scholar 

  5. F. Hagemann, Auswirkungen einer Direkten Nachbehandlung auf die Produkteigenschaften beim Dünnbandgießen, Diss. Thesis, Techn. Hochsch. Aachen, 2003 (in German)

  6. T. Haga, K. Takahashi, M. Ikawa, and H. Watari, Twin Roll Casting of Aluminum Alloy Strips, J. Mater. Process. Technol., 2004, 153–154, p 42–47

    Article  Google Scholar 

  7. H.-M. Chen, H.-S. Yu, S.-B. Kang, G.-H. Min, and Y.-X. Jin, Effect of rolling temperature on microstructure and texture of twin roll cast ZK60 magnesium alloy, Trans. Nonferrous Met. Soc. China, 2010, 11(20), p 2086–2091

    Article  Google Scholar 

  8. O. Engler and J. Hirsch, Texture Control by Thermomechanical Processing of AA6xxx Al–Mg–Si Sheet Alloys for Automotive Applications: A Review, Mater. Sci. Eng. A, 2002, 1–2(336), p 249–262

    Article  Google Scholar 

  9. C. Poletti, M. Rodriguez-Hortalá, M. Hausera, and C. Sommitsch, Microstructure Development in Hot Deformed AA6082, Mater. Sci. Eng. A, 2011, 6(528), p 2423–2430

    Article  Google Scholar 

  10. C. Sommitsch, P. Sherstnev, Modellierung der Strukturentwicklung während des Warmwalzens, Herstellung und Weiterverarbeitung von Flachprodukten (Modelling of Structure Development during Hot Rolling, Production and further Treatment of Thin Products), R. Kawalla, Ed., MEFORM 2009, March 25-27, 2009 (Freiberg, Germany), TU Bergakademie Freiberg, p 50-64 (in German)

  11. S. Das, N.S. Lim, H.W. Kim, and C.G. Park, Effect Of Rolling Speed on Microstructure and Age-Hardening Behaviour of Al–Mg–Si Alloy Produced by Twin Roll Casting Process, Mater. Des., 2011, 8–9(32), p 4603–4607

    Article  Google Scholar 

  12. Y. Birol, Pre-aging to Improve Bake Hardening in a Twin-Roll Cast Al–Mg–Si Alloy, Mater. Sci. Eng. A, 2005, 1–2(391), p 175–180

    Article  Google Scholar 

  13. Y. Birol, Pre-straining to Improve the Bake Hardening Response of a Twin-Roll Cast Al–Mg–Si Alloy, Scr. Mater., 2005, 3(52), p 169–173

    Article  Google Scholar 

  14. G.A. Merkulova, Metallovedenie i termičeskaâ obrabotka cvetnyh splavov: učeb. Posobie (Material science and heat treatment of non-ferrous alloys: Teaching materials), Sibirskij Federal’nyj Universitet, Krasnoârsk, 2008 (in Russian)

  15. T. Haga and S. Suzuki, Study on High-Speed Twin-Roll Caster for Aluminum Alloys, J. Mater. Process. Technol., 2003, 143–144, p 895–900

    Article  Google Scholar 

  16. O. Grydin, Y.K. Ogins’kyy, V.M. Danchenko, and Fr.-W Bach, Experimental Twin-Roll Casting Equipment for Production of Thin Strips, Metall. Min. Ind., 2010, 5(2), p 348–354

    Google Scholar 

  17. Aluminium and Aluminium Alloys: Sheet, Strip and Plate: Part 2: Mechanical properties, EN 485-2, 2008

  18. Metallic Materials: Tensile Testing: Part 1, ISO 6892-1:2009

  19. G.F. Vander Voort, Metallography: Principles and Practice, McGraw-Hill Book, New York, 1984

    Google Scholar 

  20. Y.S. Park, S.B. Lee, and N.J. Kim, Microstructure and Mechanical Properties of Strip Cast Al-Mg-Si-X Alloys, Mater. Trans., 2003, 12(44), p 2617–2624

    Article  Google Scholar 

  21. B.A. Kolachev, V.I. Yelagin, and V.A. Livanov, Metallovedenie I, Termičeskaâ Obrabotka Cvetnyh Metallov i Splavov (Metallography and Heat Treatment of Non-ferrous Metals and Alloys), MISIS, Moskau, 1999 ((in Russian))

    Google Scholar 

  22. R. Hu, T. Ogura, H. Tezuka, T. Sato, and Q. Liu, Dispersoid Formation and Recrystallization Behavior in an Al-Mg-Si-Mn Alloy, J. Mater. Sci. Technol., 2010, 3(26), p 237–243

    Article  Google Scholar 

  23. N.D. Hurley, W.H. van Geertruyden, and W.Z. Misiolek, Surface Grain Structure Evolution in Hot Rolling of 6061 Aluminum Alloy, J. Mater. Process. Technol., 2009, 18–19(209), p 5990–5995

    Article  Google Scholar 

  24. Û.M. Lahtin, Osnovy Metallovedeniâ (Fundamentals of Material Science), Metallurgiâ, Moskau, 1988 ((in Russian))

    Google Scholar 

  25. D. Altenpohl, Aluminium von Innen (Aluminum from the Inside), 5th ed., Aluminium-Verlag, Düsseldorf, 1994, p 201–216 ((in German))

    Google Scholar 

  26. L. Donati, J.S. Dzwonczyk, J. Zhou, and L. Tomesani, Microstructure Prediction of Hot-Deformed Aluminium Alloys, Key Eng. Mater., 2008, 367, p 107–116

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Federal Ministry of Education and Research (BMBF) as well as the Ministry of Education, Science, Youth and Sport of Ukraine for their financial support for the international cooperative scientific work carried out within the scope of the project 01DK12032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nürnberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grydin, O., Stolbchenko, M., Nürnberger, F. et al. Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082. J. of Materi Eng and Perform 23, 937–943 (2014). https://doi.org/10.1007/s11665-013-0816-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0816-4

Keywords

Navigation