Thermodynamic Evaluation of the Phase Stability and Microstructural Characterization of a Cast B1914 Superalloy

  • Alex Matos da Silva CostaEmail author
  • Carlos Angelo Nunes
  • Renato Baldan
  • Gilberto Carvalho Coelho


The boron-carbon superalloys (BC alloys) were developed to reduce the carbon content of the alloys to less than 0.02 wt.% and increase the boron content to 0.1 wt.% in some Ni-based superalloys. In this study, we have used characterization techniques, such as DTA, XRD, SEM coupling, and thermodynamic calculation using Thermo-Calc software, to obtain information about the phase transformation reaction temperatures and the elemental compositions of the microstructural constituents encountered in the B1914 superalloy. The microstructure of the B1914 superalloy was composed of a gamma (γ) phase with a dendritic structure and gamma prime (γ′) phase with a cuboidal shape. Precipitates of γ′ and a lamellar eutectic, composed of γ/(Mo,Cr,Ni)3B2, were identified in the interdendritic region. The thermodynamic calculation results have shown to be a valuable tool for predicting the transformation temperature, such as liquidus, γ’ solvus, and incipient melting point. These transformations are important parameters used in casting simulation software for determining the heat treatment and welding repair conditions for parts made from this alloy.


B1914 superalloy microstructural characterization phase transformation reaction thermodynamic calculation 


  1. 1.
    M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, 2002, p 31–32Google Scholar
  2. 2.
    S.E. Kim, M.P. Jackson, R.C. Reed, C. Small, A. James, and N.K. Park, Quantification of the Minor Precipitates in UDIMET™ alloy 720(LI) Using Electrolytic Extraction and X-Ray Diffraction, Mater. Sci. Eng. A, 1998, 245, p 225–232CrossRefGoogle Scholar
  3. 3.
    C.N. Wei, H.Y. Bor, C.Y. Ma, and T.S. Lee, A Study of IN-713LC Superalloy Grain Refinement Effects on Microstructure and Tensile Properties, Mater. Chem. Phys., 2003, 80, p 89–93CrossRefGoogle Scholar
  4. 4.
    F. Zupanič, T. Bončina, A. Križman, B. Markoli, and S. Spaić, Microstructural Constituents of the Ni-Based Superalloy GMR 235 in the As-Cast Condition, Scr. Mater., 2002, 46, p 667–672CrossRefGoogle Scholar
  5. 5.
    F.S. Yin, X.F. Sun, J.G. Li, H.R. Guan, and Z.Q. Hu, Effects of Melt Treatment on the Cast Structure of M963 Superalloy, Scr. Mater., 2003, 48, p 425–429CrossRefGoogle Scholar
  6. 6.
    K. Song, M.J. Blackburn, and M. Aindow, Extraction Replication of Carbides and Borides in the Ni-Base Superalloy IN100, Microsc. Microanal., 2004, 10(Suppl 2), p 692–693CrossRefGoogle Scholar
  7. 7.
    S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, and K. Ogi, Eta phase and Boride Formation in Directionally Solidified Ni-Base Superalloy IN792+Hf, Metall. Mater. Trans. A, 2007, 38, p 883–893CrossRefGoogle Scholar
  8. 8.
    A.V. Shulga, Boron and Carbon Behavior in the Cast Ni-Base Superalloy EP962, J. Alloys Compd., 2007, 436, p 155–160CrossRefGoogle Scholar
  9. 9.
    E.R. Cutler, A.J. Wasson, and G.E. Fuchs, Effect of Minor Alloying Additions on the Carbide Morphology in a Single Crystal Ni-Base Superalloy, Scr. Mater., 2008, 58, p 146–149CrossRefGoogle Scholar
  10. 10.
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, The role of Boron on a Conventional Nickel-Based Superalloy, Mater. Sci. Eng., 2008, A491, p 159–163CrossRefGoogle Scholar
  11. 11.
    L.O. Osoba, R.G. Ding, and O.A. Ojo, Improved Resistance to Laser Weld Heat-Affected Zone Microfissuring in a Newly Developed Superalloy HAYNES 282, Metall. Mater. Trans. A, 2012, 43, p 4281–4295CrossRefGoogle Scholar
  12. 12.
    Zhaoxia Shi, Jianxin Dong, Maicang Zhang, and Lei Zheng, Solidification Characteristics and Segregation Behavior of Ni-Based Superalloy K418 for Auto Turbocharger Turbine, J. Alloys Compd., 2013, 571, p 168–177CrossRefGoogle Scholar
  13. 13.
    C.J. Burton, Differential Thermal Analysis and the Mechanisms of Minor Additions in Superalloys, Superalloys 1976 (Third International Symposium), Champion Pennsylvania US, The Seven Springs International Symposium Committee, TMS, 1976, p 147–157Google Scholar
  14. 14.
    C. Pascal, R.M. Marin-Ayral, J.C. Tédenac, and C. Merlet, Combustion Synthesis: a New Route for Repair of Gas Turbine Components: Principles and Metallurgical Structure in the NiAl/RBD61/Superalloy Junction, Mater. Sci. Eng., 2003, A341, p 144–151CrossRefGoogle Scholar
  15. 15.
    C.A. Hammersley, A New Concept in Cast Superalloys, Metallurgia, 1978, 45, p 105–108Google Scholar
  16. 16.
    L. Ouichou, F. Lavaud, G. Lesoult, Influence of the chemical composition of nickel-base superalloys on their solidification behavior and foundry performance, Superalloys 1980 (Fourth International Symposium), Champion Pennsylvania US, The Seven Springs International Symposium Committee, TMS, 1980, p 235–244Google Scholar
  17. 17.
    M.T. Jovanović, Z. Mišković, and B. Lukić, Microstructure and Stress-Rupture Life of Polycrystal, Directionally Solidified, and Single Crystal Castings of Ni-Based IN 939 Superalloy, Mater. Charact., 1998, 40, p 261–268CrossRefGoogle Scholar
  18. 18.
    F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, 1st ed., Elsevier, Amsterdam, 2006, p 215–216Google Scholar
  19. 19.
    R.C. Reed, The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, 2006, p 53–54CrossRefGoogle Scholar
  20. 20.
    G.L.R. Durber, C.A. Hammersley, Production Experience with the Boron Modified Nickel High Temperature Casting Alloys, Metallurgia, 1979, 46, p 628–633Google Scholar
  21. 21.
    I.S. Kim, B.G. Choi, S.M. Seo, and C.Y. Jo, Mechanical Behavior of As-Cast and High Temperature Exposed Ni-Base Superalloy B1900, Mater. Sci. Forum, 2004, 449–452, p 541–544CrossRefGoogle Scholar
  22. 22.
    G.M. Janowski, B.S. Harmon, and B.J. Pletka, Thermal Stability of the Ni-Base Superalloy B-1900+Hf with Tantalum Variations, Metall. Mater. Trans. A, 1987, 18, p 1341–1351CrossRefGoogle Scholar
  23. 23.
    G.R. Halford, M.J. Verrilli, S. Kalluri, F.J. Ritzert, R.E. Duckert, F.A. Holland, Thermomechanical and bithermal fatigue behavior of cast B-1900+Hf and wrought Haynes 188, Nasa Technical Memorandum, 1991, 23 ppGoogle Scholar
  24. 24.
    Thermo-Calc Software TTNI8/Ni-based superalloys database version 8, Accessed 25 March 2009
  25. 25.
    W. Kraus and G. Nolze, Powder Cell: A Program for the Representation and Manipulation of Crystal Structure and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Cryst., 1996, 29, p 301–303CrossRefGoogle Scholar
  26. 26.
    P. Pearson and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, 1991Google Scholar
  27. 27.
    A. Wittmann, H. Nowotny, and H. Boller, Ein Beitrag zum Dreistoff Titan-Molybdan-Bor, Monatsh. Chem., 1960, 91, p 608–615 ((in German))CrossRefGoogle Scholar
  28. 28.
    N. D’Souza, H.B. Dong, An analysis of solidification path in the Ni-base superalloy, CMSX10K, Superalloys 2008 (Eleventh International Symposium), Roger C. Reed, Kenneth A. Green, Pierre Caron, Timothy P. Gabb, Michael G. Fahrmann, Eric S. Huron, Sheila A. Woodard, Eds., September 14–18 (Champion-Pennsylvania, US), The Seven Springs International Symposium Committee, TMS, 2008, p 261–269Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Alex Matos da Silva Costa
    • 1
    Email author
  • Carlos Angelo Nunes
    • 1
  • Renato Baldan
    • 1
  • Gilberto Carvalho Coelho
    • 1
    • 2
  1. 1.Escola de Engenharia de Lorena-EELUniversidade de São Paulo-USPLorenaBrazil
  2. 2.UniFoa, Centro Universitário de Volta Redonda, Núcleo de PesquisaVolta RedondaBrazil

Personalised recommendations