Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-Quenched Steel

Abstract

The dynamic recrystallization behavior of 38MnVS6 non-quenched steel was investigated by hot compression tests on a Gleeble1500 thermomechanical simulator. True stress-strain curves and deformed specimens were obtained in the temperature range of 850-1200 °C and the strain rate range of 0.01-10 s−1. By regression analysis of the experimental results, the critical strain model and austenite grain size model for dynamic recrystallization were established as a function of Zener-Hollomon parameter. The dynamic recrystallization kinetic model for 38MnVS6 non-quenched steel was established on the basis of the modified Avrami equation. In addition, based on the dynamic material model, the processing map of the steel was established at the strain of 0.5. It was found that the unstable phenomena of the steel did not appear at the deformation conditions. The processing map exhibited a domain of complete dynamic recrystallization occurring in the temperature range of 950-1200 °C and the strain rate range of 0.01-5 s−1, which were the optimum parameters for the hot working of the steel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Y. Luo, J.M. Peng, H.B. Wang, and X.C. Wu, Effect of Tempering on Microstructure and Mechanical Properties of a Non-Quenched Bainitic Steel, Mater. Sci. Eng. A, 2010, 527(15), p 3427–3433

    Article  Google Scholar 

  2. 2.

    C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13(3-4), p 187–194

    Article  Google Scholar 

  3. 3.

    P.D. Hodgson, Microstructure Modelling for Property Prediction and Control, J. Mater. Process. Technol., 1996, 60(1-4, 15), p 27–33

    Article  Google Scholar 

  4. 4.

    S.H. Zahiri and P.D. Hodgson, The Static, Dynamic and Metadynamic Recrystallization of a Medium Carbon Steel, Mater. Sci. Technol., 2004, 20(4), p 458–464

    Article  Google Scholar 

  5. 5.

    J.J. Jonas and I. Weiss, Effect of Precipitation on Recrystallization in Microalloyed Steels, Met. Sci., 1979, 13(3-4), p 238–245

    Article  Google Scholar 

  6. 6.

    S.H. Cho, K.B. Kang, and J.J. Jonas, Mathematical Moldeling of the Recrystallization Kinetics of Nb Microalloyed Steel, ISIJ Int., 2001, 41(7), p 766–773

    Article  Google Scholar 

  7. 7.

    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  8. 8.

    F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527(3, 15), p 735–744

    Article  Google Scholar 

  9. 9.

    S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31(5), p 2319–2323

    Article  Google Scholar 

  10. 10.

    J. Wang, “Numerical Simulation of Multi-physical Field for Microalloyed Forging Steel during 3D Complex Hot Forging”, Ph.D. Thesis, Shanghai Jiao Tong University, 2007, in Chinese

  11. 11.

    C.M. Sellars and W.J. McG, Tegart, Hot Workability, Int. Met. Rev., 1972, 17, p 1–24

    Article  Google Scholar 

  12. 12.

    B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18(8), p 1029–1034

    Article  Google Scholar 

  13. 13.

    C.M. Sellars and W.J. Mctegart, On Mechanism of Hot Deformation, Acta Matall., 1966, 14(9), p 1136–1138

    Article  Google Scholar 

  14. 14.

    C.X. Yue, L.W. Zhang, S.L. Liao, J.B. Pei, H.J. Gao, Y.W. Jia, and X.J. Lian, Research on the Dynamic Recrystallization Behavior of GCr15 Steel, Mater. Sci. Eng. A, 2009, 499(1-2, 15), p 177–181

    Article  Google Scholar 

  15. 15.

    J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Dynamic Recrystallization Behavior of Microalloyed Forged Steel, J. Iron. Steel. Res. Int., 2008, 15(3), p 78–81

    Article  Google Scholar 

  16. 16.

    A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modeling of VCN200 Low Alloy Steel, Appl. Mater. Model., 2012, 36(11), p 5624–5632

    Article  Google Scholar 

  17. 17.

    G. Kugler and R. Turk, Study of the Influence of Initial Microstructure Topology on the Kinetics of Static Recrystallization Using a Cellular Automata Model, Comput. Mater. Sci., 2006, 37(3), p 284–291

    Article  Google Scholar 

  18. 18.

    J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756

    Article  Google Scholar 

  19. 19.

    A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High-Temperatures and Strain Rates, Metall. Trans., 1991, 22(7), p 1545–1558

    Article  Google Scholar 

  20. 20.

    Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Research on the Hot Deformation Behavior of Ti40 Alloy Using Processing Map, Mater. Sci. Eng. A, 2011, 528(3), p 1205–1211

    Article  Google Scholar 

  21. 21.

    P. Zhang, F.G. Li, and Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., 2010, 19(9), p 1290–1297

    Article  Google Scholar 

  22. 22.

    Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12(6), p 638–645

    Article  Google Scholar 

  23. 23.

    Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28(6-8), p 435–451

    Google Scholar 

  24. 24.

    G.Y. Qiao, F.R. Xiao, X.B. Zhang, Y.B. Cao, and B. Liao, Effects of Content of Nb and C on Hot Deformation Behaviors of High Nb X80 Pipeline Steels, Trans. Nonferrous Met. Soc. China, 2009, 19(6), p 1395–1399

    Article  Google Scholar 

  25. 25.

    T. Yan, E.L. Yu, and Y.Q. Zhao, Constitutive Modeling for Flow Stress of 55SiMnMo Bainite Steel at Hot Working Conditions, Mater. Des., 2013, 50, p 574–580

    Article  Google Scholar 

  26. 26.

    X.R. Lei, Q.F. Ding, Y.Y. Chen, X.L. Rui, S.R. Li, and Q.F. Wang, Effect of Niobium on Dynamic Recrystallization Behavior of 5% Ni Steel, J. Iron. Steel. Res. Int., 2013, 20(6), p 38–44

    Article  Google Scholar 

  27. 27.

    B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, R.M. Dong, M. Jin, and Q.H. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1455–1461

    Article  Google Scholar 

  28. 28.

    Q.J. Chen, Y.L. Kang, H. Yu, C.M. Wang, and C.X. Li, Research on Microstructural Evolution and Dynamic Recrystallization Behavior of JB800 Bainitic Steel by TEM, J. Univ. Sci. Technol. Beijing, 2008, 15(3), p 250–254

    Article  Google Scholar 

  29. 29.

    K.-D. Bouzakis, G. Maliaris, and A. Tsouknidas, FEM Supported Semi-solid High Pressure Die Casting Process Optimization Based on Rheological Properties by Isothermal Compression Tests at Thixo Temperature Extracted, Comput. Mater. Sci., 2012, 59, p 133–139

    Article  Google Scholar 

  30. 30.

    L.X. Du, Z.P. Zhang, G.F. She, X.H. Liu, and G.D. Wang, Austenite Recrystallization and Controlled Rolling of Low Carbon Steels, J. Iron. Steel. Res. Int., 2006, 13(3), p 31-35

    Google Scholar 

Download references

Acknowledgment

The authors appreciate the financial support received from the Suzhou Suxin Special Steel Group Co., Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-wen Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gu, S., Zhang, L., Ruan, J. et al. Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-Quenched Steel. J. of Materi Eng and Perform 23, 1062–1068 (2014). https://doi.org/10.1007/s11665-013-0808-4

Download citation

Keywords

  • 38MnVS6 non-quenched steel
  • dynamic recrystallization behavior
  • flow stress
  • processing map