Skip to main content
Log in

Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pure titanium (Ti) TA1 fibers/wires with 0.08 and 0.15 mm diameters were processed by a novel method that combined press forming, vacuum sintering (≥10−2 Pa), and heat treatment to fabricate entangled Ti wire materials (ETWMs). The ETWMs exhibited a total porosity ranging from 44.2 ± 0.1 to 81.2 ± 0.1% and an open porosity ranging from 43.5 ± 0.1 to 80.9 ± 0.1%. The processing parameters of fiber diameter, formation pressure, sintering temperature, and sintering time were applied to examine porous ETWM morphology, porosity, pore size, and mechanical properties. The importance of primary factors controlling porous structure and porosity in ETWMs were found to be fiber/wire diameter > formation pressure > sintering temperature > sintering time. Furthermore, Ti fiber diameter was shown to directly impact pore size. High formation pressure resulted in a fine, uniform porous structure with low porosity. Sintering at high temperature for long-time periods promoted sintering point formation, resulting in neck coarsening. This effect contributed to the characteristic mechanical properties observed in these ETWMs. If the sintering effect is considered in isolation, ETWMs fabricated with 0.08 mm diameter Ti fibers/wires and sintered at 1300 °C for 90 min achieved smaller, more uniform porous structures that further exhibited improved connections among fibers/wires and excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.B. Li, Biomedical Materials, Chemical Industry Press, Beijing, 2003, p 1–200

    Google Scholar 

  2. C.Y. Zhao, X.D. Zhu, T. Yuan, H.S. Fan, and X.D. Zhang, Fabrication of Biomimetic Apatite Coating on Porous Titanium and Their Osteointegration in Femurs of Dogs, Mater. Sci. Eng. C, 2010, 30, p 98–104

    Article  Google Scholar 

  3. D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Bioactive Ti Metal Analogous to Human Cancellous Bone: Fabrication by Selective Laser Melting and Chemical Treatments, Acta Biomater., 2011, 7, p 1398–1406

    Article  Google Scholar 

  4. B. Ye and D.C. Dunand, Titanium Foams Produced by Solid-State Replication of NaCl Powders, Mater. Sci. Eng. A, 2010, 528, p 691–697

    Article  Google Scholar 

  5. J.C. Li and D.C. Dunand, Mechanical Properties of Directionally Freeze-Cast Titanium Foams, Acta Mater., 2011, 59, p 146–158

    Article  Google Scholar 

  6. W.C. Xue, B.V. Krishna, A. Bandyopadhyay, and S. Bose, Processing and Biocompatibility Evaluation of Laser Processed Porous Titanium, Acta Mater., 2007, 3, p 1007–1018

    Google Scholar 

  7. K. Manukyana, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan, Novel NiZr-Based Porous Biomaterials: Synthesis and In Vitro Testing, Chem. Eng. J., 2010, 162, p 406–414

    Article  Google Scholar 

  8. T. Albrektsson and C. Johansson, Osteoinduction, Osteoconduction and Osseointegration, Eur. Spine J., 2001, 10, p S96–S101

    Article  Google Scholar 

  9. M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11, p 18–25

    Article  Google Scholar 

  10. B. Neirinck, T. Mattheys, A. Braem, J. Fransaer, O.V.D. Biest, and J. Vleugels, Preparation of Titanium Foams by Slip Casting of Particle Stabilized Emulsions, Adv. Eng. Mater., 2009, 11, p 633–636

    Article  Google Scholar 

  11. Y. Chino and D.C. Dunand, Directionally Freeze-Cast Titanium Foam with Aligned, Elongated Pores, Acta Mater., 2008, 56, p 105–113

    Article  Google Scholar 

  12. S.W. Yook, H.E. Kim, and Y.H. Koh, Fabrication of Porous Titanium Scaffolds with High Compressive Strength Using Camphene-Based Freeze Casting, Mater. Lett., 2009, 63, p 1502–1504

    Article  Google Scholar 

  13. M. Bram, A. Laptev, H.P. Buchkremer, and D. Stöver, Application of Powder Metallurgy for the Production of Highly Porous Functional Parts with Open Porosity, Mater. Forum, 2005, 29, p 119–122

    Google Scholar 

  14. I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Scripta Mater., 2003, 49, p 1197–1202

    Article  Google Scholar 

  15. S.C. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behavior, J. Mater. Sci. Mater. Electron., 2008, 19, p 451–457

    Article  Google Scholar 

  16. J.H. Lee, H.E. Kim, and Y.H. Koh, Highly Porous Titanium (Ti) Scaffolds with Bioactive Microporous Hydroxyapatite/TiO2 Hybrid Coating Layer, Mater. Lett., 2009, 63, p 1995–1998

    Article  Google Scholar 

  17. J. Zhao, X. Lu, and J. Weng, Macroporous Ti-Based Composite Scaffold Prepared by Polymer Impregnating Method with Calcium Phosphate Coatings, Mater. Lett., 2008, 62, p 2921–2924

    Article  Google Scholar 

  18. J.P. Li, H. Pamela, D. Mirella, E.W. Clayton, R.W. Joost, A.B. Clemens, and G. Klaas, Bone Ingrowth in Porous Titanium Implants Produced by 3D fiber Deposition, Biomaterials, 2007, 28, p 2810–2820

    Article  Google Scholar 

  19. P. Liu, Q.B. Tan, L.H. Wu, and G. He, Compressive and Pseudo-elastic Hysteresis Behavior of Entangled Titanium Wire Materials, Mater. Sci. Eng. A, 2010, 527, p 3301–3309

    Article  Google Scholar 

  20. G. He, P. Liu, and Q.B. Tan, Porous Titanium Materials with Entangled Wire Structure for Load-Bearing Biomedical Applications, J. Mech. Behav. Biomed., 2012, 5, p 16–31

    Article  Google Scholar 

  21. I.V. Shishkovsky, M.V. Kuznetsov, and Y.G. MorozovInt, Porous Titanium and Nitinol Implants Synthesized by SHS/SLS: Microstructural and Histomorphological Analyses of Tissue Reactions, J. Self Propag. High Temp Synth., 2010, 19(2), p 157–167

    Article  Google Scholar 

  22. S.W. Jiang and M. Qi, Development of Porous Metals Used as Biomaterials, J. Mater. Sci. Eng., 2002, 20(4), p 597–600

    Google Scholar 

  23. J. Banhart and D. Weaire, On the Road Again-Metal Foams Find Favor, Phys. Today, 2000, 55, p 37–42

    Article  Google Scholar 

  24. P. Liu, G. He, and L.H. Wu, Fabrication of Sintered Steel Wire Mesh and Its Compressive Properties, Mater. Sci. Eng. A, 2008, 489, p 21–28

    Article  Google Scholar 

  25. Q. Tan, P. Liu, C.L. Du, L.H. Wu, and G. He, Mechanical Behaviors of Quasi-Ordered Entangled Aluminum Alloy Wire Material, Mater. Sci. Eng. A, 2009, 527, p 38–44

    Article  Google Scholar 

  26. P. Liu, G. He, and L.H. Wu, Uniaxial Tensile Stress-Strain Behavior of Entangled Steel Wire Material, Mater. Sci. Eng. A, 2009, 509, p 69–75

    Article  Google Scholar 

  27. P. Liu, G. He, and L.H. Wu, Structure Deformation and Failure of Sintered Steel Wire Mesh Under Torsion Loading, Mater. Des., 2009, 30, p 2264–2268

    Article  Google Scholar 

  28. P. Liu, G. He, and L.H. Wu, Impact Behavior of Entangled Steel Wire Material, Mater. Charact., 2009, 60, p 900–906

    Article  Google Scholar 

  29. R.P. Taylor, S.T. McClain, and J.T. Berry, Uncertainty Analysis of Metal-Casting Porosity Measurements Using Archimedes’ Principle, Int. J. Cast. Metal. Res., 1999, 11(4), p 247–257

    Google Scholar 

  30. P. Liu, Q.H. Zhao, G. He, Y.M. Qiao, H. Li, J.J. Zheng, J.P. Li, and Y.X. Zhang, Compressive and Tensile Behavior of a High-Toughness Entangled Titanium Wire Materials (ETWMs), J. Mater. Eng. Perform., under review

  31. D.L. Su, Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2003, p 49–50

    Google Scholar 

  32. Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata et al., BMP-Induced Osteogenesis on the Surface of Hydroxyapatite with Geometrically Feasible and Nonfeasible Structures: Topology of Osteogenesis, J. Biomed. Mater. Res., 1998, 39(2), p 190–199

    Article  Google Scholar 

  33. D.W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21, p 2529–2543

    Article  Google Scholar 

  34. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of Biocompatible Porous Ti and Mg, Scripta Mater., 2001, 45, p 1147–1153

    Article  Google Scholar 

  35. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, and M. Mabuchi, Processing and Mechanical Properties of Autogenous Titanium Implant Materials, J. Mater. Sci. Mater. Med., 2002, 13(4), p 397–401

    Article  Google Scholar 

  36. M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend, and W.R. Walsh, Morphometric and Mechanical Evaluation of Titanium Implant Integration: Comparison of Five Surface Structures, J. Biomed. Mater. Res. A, 2000, 51(1), p 15–22

    Article  Google Scholar 

  37. P.Y. Huang, Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1982, p 166–338

    Google Scholar 

  38. P.X. Wang, Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997, p 181–268

    Google Scholar 

  39. M. Zhao, Y.K. Guo, Z.M. Yu, and Z.L. Ning, Influence of Sintering Temperature on Densification and Flexural Strength of Stainless Steel (316L), J. Harbin Univ. Sci. Technol., 2000, 5(3), p 105–107

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Medicine and Engineering Joint Foundation of Shanghai Jiao Tong University (No. YG2011MS28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Zhao, Q., He, G. et al. Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties. J. of Materi Eng and Perform 23, 954–966 (2014). https://doi.org/10.1007/s11665-013-0799-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0799-1

Keywords

Navigation