Skip to main content
Log in

Inhibition Effect of 2,4,6-Trimercapto-1,3,5-triazine Self-Assembled Monolayers on Copper Corrosion in NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

2,4,6-Trimercapto-1,3,5-triazine (TMTA) was self-assembled on copper surface by a simple method and the resulting self-assembled monolayers (SAMs) were characterized by FTIR and contact angle. It was found that TMTA dissolved in aqueous solution could be adsorbed rapidly on the copper surface and yielded a hydrophilic surface. The inhibition effect of TMTA SAMs on copper corrosion in 0.5 M NaCl solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. Results indicated that TMTA SAMs acted as a mixed type corrosion inhibitor with predominant control of cathodic reaction. The inhibition efficiency increased with increasing assembly time but decreased to some extent with increasing concentration of chloride ions. Immersion test revealed the SAMs could keep good stability and durability in 0.5 M NaCl solution. From the experimental and theoretical study, the mechanisms of TMTA SAMs formation and corrosion protection for copper were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.M. Antonijevic, S.M. Milic, and M.B. Petrovic, Films Formed on Copper Surface in Chloride Media in the Presence of Azoles, Corros. Sci., 2009, 51(6), p 1228–1237

    Article  Google Scholar 

  2. J.Y. Josefowicz, L. Xie, and G.C. Famngton, Observation of Intermediate CuCl Species During the Anodic Dissolution of Cu Using Atomic Force Microscopy, J. Phys. Chem., 1993, 97(46), p 11995–11998

    Article  Google Scholar 

  3. S.G. Chen, Y. Chen, Y.H. Lei, and Y.S. Yin, Novel Strategy in Enhancing Stability and Corrosion Resistance for Hydrophobic Functional Films on Copper Surfaces, Electrochem. Commun., 2009, 11(8), p 1675–1679

    Article  Google Scholar 

  4. F.E. Heakal and S. Haruyama, Impedance Studies of the Inhibitive Effect of Benzotriazole on the Corrosion of Copper in Sodium Chloride Medium, Corros. Sci., 1980, 20(7), p 887–898

    Article  Google Scholar 

  5. A. Guenbour, A. Kacemi, and A. Benbachir, Corrosion Protection of Copper by Polyaminophenol Films, Prog. Org. Coat., 2000, 39(2–4), p 151–155

    Article  Google Scholar 

  6. J. Telegdi, T. Rigó, and E. Kálmán, Molecular Layers of Hydroxamic Acids in Copper Corrosion Inhibition, J. Electroanal. Chem., 2005, 582(1–2), p 191–201

    Article  Google Scholar 

  7. Ž. Petrović, M. Metikoš-Huković, and R. Babić, Modification of Copper with Self-Assembled Organic Coatings, Prog. Org. Coat., 2008, 61(1), p 1–6

    Article  Google Scholar 

  8. J.W. Wang, L. Chen, and Y.D. He, Preparation of Environmental Friendly Coatings Based on Natural Shellac Modified by Diamine and Its Applications for Copper Protection, Prog. Org. Coat., 2008, 62(3), p 307–312

    Article  Google Scholar 

  9. P.E. Laibinis and G.M. Whitesides, Self-Assembled Monolayers of n-Alkanethiolates on Copper are Barrier Films That Protect the Metal Against Oxidation by Air, J. Am. Chem. Soc., 1992, 114(23), p 9022–9028

    Article  Google Scholar 

  10. G.K. Jennings, J.C. Munro, T.H. Yong, and P.E. Laibinis, Effect of Chain Length on the Protection of Copper by n-Alkanethiols, Langmuir, 1998, 14(21), p 6130–6139

    Article  Google Scholar 

  11. F.P. Zamborini and R.M. Crooks, Corrosion Passivation of Gold by n-Alkanethiol Self-Assembled Monolayers: Effect of Chain Length and End Group, Langmuir, 1998, 14(12), p 3279–3286

    Article  Google Scholar 

  12. G.K. Jennings, T.H. Yong, J.C. Munro, and P.E. Laibinis, Structural Effects on the Barrier Properties of Self-Assembled Monolayers Formed from Long-Chain ω-Alkoxy-n-alkanethiols on Copper, J. Am. Chem. Soc., 2003, 125(10), p 2950–2957

    Article  Google Scholar 

  13. J.M. Bastidas and E. Otero, A Comparative Study of Benzotriazole and 2-Amino-5-mercapto-1,3,4-thiadiazole as Copper Corrosion Inhibitors in Acid Media, Mater. Corros., 1996, 47(6), p 333–337

    Article  Google Scholar 

  14. Y.Y. Feng, S.H. Chen, H.L. Zhang, P. Li, L. Wu, and W.J. Guo, Characterization of Iron Surface Modified by 2-Mercaptobenzothiazole Self-Assembled Monolayers, Appl. Surf. Sci., 2006, 253(5), p 2812–2819

    Article  Google Scholar 

  15. H.F. Ma, T. Song, H. Sun, and X. Li, Experimental and Theoretical Elucidation on the Inhibition Mechanism of 1-Methyl-5-mercapto-1,2,3,4-tetrazole Self-Assembled Films on Corrosion of Iron in 0.5 M H2SO4 Solutions, Thin Solid Films, 2008, 516(6), p 1020–1024

    Article  Google Scholar 

  16. C.T. Wang, S.H. Chen, H.Y. Ma, and C.S. Qi, Protection of Copper Corrosion by Carbazole and n-Vinylcarbazole Self-Assembled Films in NaCl Solution, J. Appl. Electrochem., 2003, 33(2), p 179–186

    Article  Google Scholar 

  17. W. Chen, S. Hong, H.B. Li, H.Q. Luo, M. Li, and N.B. Li, Protection of Copper Corrosion in 0.5 M NaCl Solution by Modification of 5-Mercapto-3-phenyl-1,3,4-thiadiazole-2-thione Potassium Self-Assembled Monolayer, Corros. Sci., 2011, 53, p 1072–1078

    Article  Google Scholar 

  18. K.R. Henke, D. Robertson, M. Krepps, and D.A. Atwood, Chemistry and Stability of Precipitate from Aqueous Solutions of 2,4,6-Trimercaptotriazine, Trisodium Salt, Nonahydrate (TMT) and Mercury(II) Chloride, Water Res., 2000, 34(11), p 3005–3010

    Article  Google Scholar 

  19. M. Kucharski and E. Chmiel-Szukiewicz, Reactions of Trithiocyanuric Acid with Oxiranes. I. Synthesis of Polyetherols, Appl. Polym. Sci., 2000, 76(4), p 439–445

    Article  Google Scholar 

  20. W. Clegg, J.E. Davies, M.R.J. Elsegood, E. Lamb, J.J. Longridge, J.M. Rawson, R. Snaith, and A.E.H. Wheatley, The First Structural Studies on Trithiocyanuric Acid: The Solid State Structures of Its HMPA Adduct and Its Mono-Lithiated HMPA Complex, Inorg. Chem. Commun., 1998, 1(2), p 58–60

    Article  Google Scholar 

  21. F. Guo, E.Y. Cheung, K.D.M. Harris, and V.R. Pedireddi, Contrasting Solid-State Structures of Trithiocyanuric Acid and Cyanuric Acid, Cryst. Growth Des., 2006, 6(4), p 846–848

    Article  Google Scholar 

  22. A. Ranganathan, V.R. Pedireddi, G. Sanjayan, K.N. Ganesh, and C.N.R. Raoa, Sensitive Dependence of the Hydrogen-Bonded Assemblies in Cyanuric Acid-4,4′-Bipyridyl Adducts on the Solvent and the Structure of the Parent Acid, J. Mol. Struct., 2000, 522(1–3), p 87–94

    Article  Google Scholar 

  23. P. Kopel, Z. Trávníček, R. Zbořil, and J. Marek, Synthesis, X-Ray and Mössbauer Study of Iron(II) Complexes with Trithiocyanuric Acid (TTCH3), The X-Ray Structures of [Fe(bpy)3](TTCH)·2bpy·7H2O and [Fe(phen)3](TTCH2)(ClO4)·2CH3OH·2H2O, J. Polyhedron, 2004, 23(14), p 2193–2202

    Google Scholar 

  24. H. Rostkowska, L. Lapinski, A. Khvorostov, and M.J. Nowak, UV-Induced Trithione Trithiol Triple Proton Transfer in Trithiocyanuric Acid Isolated in Low-Temperature Matrixes, J. Phys. Chem. A, 2005, 109(10), p 2160–2166

    Article  Google Scholar 

  25. N. Osaka, M. Ishitsuka, and T. Hiaki, Infrared Reflection Absorption Spectroscopic Study of Adsorption Structure of Self-Assembled Monolayer Film of Trithiocyanuric Acid on Evaporated Silver Film, J. Mol. Struct., 2009, 921(1–3), p 144–149

    Article  Google Scholar 

  26. K.R. Henke, A.R. Hutchison, M.K. Krepps, S. Parkin, and D.A. Atwood, Chemistry of 2,4,6-Trimercapto-1,3,5-triazine (TMT): Acid Dissociation Constants and Group 2 Complexes, Inorg. Chem., 2001, 40(17), p 4443–4447

    Article  Google Scholar 

  27. D.M. Liao, Y.B. Luo, P. Yu, and Z.G. Chen, Chemistry of Copper Trimercaptotriazine (TMT) Compounds and Removal of Copper from Copper-Ammine Species by TMT, Organomet. Chem., 2006, 20(4), p 246–253

    Article  Google Scholar 

  28. J.G. Yu, J.C. Yu, W.K. Ho, and Z.T. Jiang, Effects of Calcination Temperature on the Photocatalytic Activity and Photo-Induced Super-Hydrophilicity of Mesoporous TiO2 Thin Film, New J. Chem., 2002, 26(5), p 607–613

    Article  Google Scholar 

  29. C.H. Liang, P. Wang, B. Wu, and N.B. Huang, Inhibition of Copper Corrosion by Self-Assembled Monolayers of Triazole Derivative in Chloride-Containing Solution, J. Solid State Electrochem., 2010, 14(8), p 1391–1399

    Google Scholar 

  30. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev., 2005, 105, p 1103–1169

    Article  Google Scholar 

  31. M. Finsgara, A. Lesara, A. Kokalj, and I. Milosev, A Comparative Electrochemical and Quantum Chemical Calculation Study of BTAH and BTAOH as Copper Corrosion Inhibitors in Near Neutral Chloride Solution, Electrochim. Acta, 2008, 53(28), p 8287–8297

    Article  Google Scholar 

  32. G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46(1), p 109–135

    Article  Google Scholar 

  33. E.M. Sherif, Effects of 2-Amino-5-(ethylthio)-1,3,4-thiadiazole on Copper Corrosion as a Corrosion Inhibitor in 3% NaCl Solutions, Surf. Sci., 2006, 252(24), p 8615–8623

    Article  Google Scholar 

  34. W.H. Li, L.C. Hu, S.T. Zhang, and B.R. Hou, Effects of Two Fungicides on the Corrosion Resistance of Copper in 3.5% NaCl Solution Under Various Conditions, Corros. Sci., 2011, 53(2), p 735–745

    Article  Google Scholar 

  35. E.M. Sherif and S. Park, Inhibition of Copper Corrosion in 3.0% NaCl Solution by N-Phenyl-14-phenylenediamine, J. Electrochem. Soc., 2005, 152(10), p B428–B433

    Article  Google Scholar 

  36. A. Shaban, E. Kalman, and J. Telegdi, An Investigation of Copper Corrosion Inhibition in Chloride Solutions by Benzo-Hydroxamic Acids, Electrochim. Acta, 1998, 43(1–2), p 159–163

    Article  Google Scholar 

  37. H.P. Lee and K. Nobe, Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media, J. Electrochem. Soc., 1986, 133(10), p 2035–2043

    Article  Google Scholar 

  38. H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li, and J.L. Luo, Electrochemical Investigation of Dynamic Interfacial Processes at 1-Octadecanethiol-Modified Copper Electrodes in Halide-Containing Solutions, Electrochim. Acta, 2003, 48(28), p 4277–4289

    Article  Google Scholar 

  39. E.M. Sherif and S.-M. Park, 2-Amino-5-ethyl-1,3,4-thiadiazole as a Corrosion Inhibitor for Copper in 3.0% NaCl Solutions, Corros. Sci., 2006, 48(12), p 4065–4079

    Article  Google Scholar 

  40. F. Mansfeld, G. Liu, H. Xiao, C.H. Tsai, and B.J. Little, The Corrosion Behaviour of Copper Alloys, Stainless Steels and Titanium in Seawater, Corros. Sci., 1994, 36(12), p 2063–2095

    Article  Google Scholar 

  41. X. Wu, H. Ma, S. Chen, Z. Xu, and A. Sui, General Equivalent Circuits for Faradaic Electrode Processes under Electrochemical Reaction Control, J. Electrochem. Soc., 1999, 146(5), p 1847–1853

    Article  Google Scholar 

  42. O.E. Barcia, O.R. Mattos, N. Pebere, and B. Tribollet, Mass-Transport Study for the Electrodissolution of Copper in 1M Hydrochloric Acid Solution by Impedance, J. Electrochem. Soc., 1993, 140(10), p 2825–2832

    Article  Google Scholar 

  43. Y. Feng, W.K. Teo, K.S. Siow, K.L. Tan, and A.K. Hsieh, The Corrosion Behaviour of Copper in Neutral Tap Water. Part I: Corrosion Mechanisms, Corros. Sci., 1996, 38(3), p 369–385

    Article  Google Scholar 

  44. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42(10), p 1669–1683

    Article  Google Scholar 

  45. M. Ehteshamzade, T. Shahrabi, and M.G. Hosseini, Inhibition of Copper Corrosion by Self-Assembled Films of New Schiff Bases and Their Modification with Alkanethiols in Aqueous Medium, Appl. Surf. Sci., 2006, 252(8), p 2949–2959

    Article  Google Scholar 

  46. Y. Feng, K.S. Siow, W.K. Teo, K.L. Tan, and A.K. Hsieh, Corrosion Mechanisms and Products of Copper in Aqueous Solutions at Various pH Values, Corrosion, 1997, 53(5), p 389–398

    Article  Google Scholar 

  47. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, AC and DC Study of the Temperature Effect on Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives, Corros. Sci., 2003, 45(1), p 33–58

    Article  Google Scholar 

  48. Z.L. Quan, S.H. Chen, Y. Li, and X.G. Cui, Adsorption Behaviour of Schiff Base and Corrosion Protection of Resulting Films to Copper Substrate, Corros. Sci., 2002, 44(4), p 703–715

    Article  Google Scholar 

  49. E. Abelev, D. Starosvetsky, and Y. Ein-Eli, Enhanced Copper Surface Protection in Aqueous Solutions Containing Short-Chain Alkanoic Acid Potassium Salts, Langmuir, 2007, 23(22), p 11281–11288

    Article  Google Scholar 

  50. A. Popova, S. Raicheva, E. Sokolova, and M. Christov, Frequency Dispersion of the Interfacial Impedance at Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives, Langmuir, 1996, 12(8), p 2083–2089

    Article  Google Scholar 

  51. M. Sabouri, T. Shahrabi, H.R. Faridi, and M.G. Hosseini, Polypyrrole and Polypyrrole-Tungstate Electropolymerization Coatings on Carbon Steel and Evaluating Their Corrosion Protection Performance via Electrochemical Impedance Spectroscopy, Prog. Org. Coat., 2009, 64(4), p 429–434

    Article  Google Scholar 

  52. S.J. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neoh, and E.T. Kang, Superhydrophobic Fluoropolymer-Modified Copper Surface via Surface Graft Polymerisation for Corrosion Protection, Corros. Sci., 2011, 53(9), p 2738–2747

    Article  Google Scholar 

  53. K.S. Lokesh, M.D. Keersmaecker, A.E.D. Depla, P. Dubruel, P. Vandenabeele, S.V. Vlierberghe, and A. Adriaens, Adsorption of Cobalt (II) 5,10,15,20-tetrakis(2-aminophenyl)-porphyrin onto Copper Substrates: Characterization and Impedance Studies for Corrosion Inhibition, Corros. Sci., 2012, 62, p 73–82

    Article  Google Scholar 

  54. E. McCafferty and N. Hackerman, Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines, J. Electrochem. Soc., 1972, 119(2), p 146–154

    Article  Google Scholar 

  55. D. Starosvetsky, O. Khaselev, M. Auinat, and Y. Ein-Eli, Initiation of Copper Dissolution in Sodium Chloride Electrolytes, Electrochim. Acta, 2006, 51(26), p 5660–5668

    Article  Google Scholar 

  56. S.J. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neoh, and E.T. Kang, Poly(1-Vinylimidazole) Formation on Copper Surfaces via Surface-Initiated Polymerization for Corrosion Protection, Corros. Sci., 2010, 52(6), p 1958–1968

    Article  Google Scholar 

  57. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, and H. Alemu, Quantum Chemical Studies on the Corrosion Inhibition of Some Sulphonamides on Mild Steel in Acidic Medium, Corros. Sci., 2009, 51(1), p 35–47

    Article  Google Scholar 

  58. E.E. Oguzie, C.K. Enenebeaku, C.O. Akalezi, S.C. Okoro, A.A. Ayuk, and E.N. Ejike, Adsorption and Corrosion-Inhibiting Effect of Dacryodis edulis Extract on Low-Carbon-Steel Corrosion in Acidic Media, J. Colloid Interface Sci., 2010, 349(1), p 283–292

    Article  Google Scholar 

  59. R.M. Issa, M.K. Awad, and F.M. Atlam, Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils, Appl. Surf. Sci., 2008, 255(5), p 2433–2441

    Article  Google Scholar 

  60. M.K. Awad, R.M. Issa, and F.M. Atlam, DFT Theoretical Studies of Antipyrine Schiff Bases as Corrosion Inhibitors, Mater. Corros., 2009, 60(8), p 813–819

    Article  Google Scholar 

  61. N.O. Obi-Egbedi, I.B. Obot, and Mohammad.I. El-Khaiary, Quantum Chemical Investigation and Statistical Analysis of the Relationship Between Corrosion Inhibition Efficiency and Molecular Structure of Xanthene and Its Derivatives on Mild Steel in Sulphuric Acid, J. Mol. Struct., 2011, 1002, p 86–96

    Article  Google Scholar 

  62. D.K. Yadav, B. Maiti, and M.A. Quraishi, Electrochemical and Quantum Chemical Studies of 3,4-Dihydropyrimidin-2(1H)-Ones as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid solution, Corros. Sci., 2010, 52(11), p 3586–3598

    Article  Google Scholar 

  63. J.R. Bailey, M.J. Hatfield, K.R. Henke, M.K. Krepps, J.L. Morris, T. Otieno, K.D. Simonetti, E.A. Wall, and D.A. Atwood, Transition Metal Complexes of 2,4,6-Trimercapto-1,3,5-triazine (TMT): Potential Precursors to Nanoparticulate Metal Sulfides, J. Organomet. Chem., 2001, 623(1–2), p 185–190

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51361001) and the Municipal Science Foundation of Chongqing City (Nos. 2004BA4024 and 2008BB4012), and all authors here express their deep thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Hong, S., Luo, H.Q. et al. Inhibition Effect of 2,4,6-Trimercapto-1,3,5-triazine Self-Assembled Monolayers on Copper Corrosion in NaCl Solution. J. of Materi Eng and Perform 23, 527–537 (2014). https://doi.org/10.1007/s11665-013-0788-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0788-4

Keywords

Navigation