Skip to main content
Log in

Cooling Capacity Optimization: Calculation of Hardening Power of Aqueous Solution Based on Poly(N-Vinyl-2-Pyrrolidone)

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Polymer quenchants are becoming increasingly popular as substitutes for traditional quenching media in hardening metallic alloys. Water-soluble organic polymer offers a number of environmental, economic, and technical advantages, as well as eliminating the quench-oil fire hazard. The close control of polymer quenchant solutions is essential for their successful applications, in order to avoid the defects of structure of steels, such as shrinkage cracks and deformations. The aim of the present paper is to evaluate and optimize the experimental parameters of polymer quenching bath which gives the best behavior quenching process and homogeneous microstructure of the final work-piece. This study has been carried out on water-soluble polymer based on poly(N-vinyl-2-pyrrolidone) PVP K30, which does not exhibit inverse solubility phenomena in water. The studied parameters include polymer concentration, bath temperature, and agitation speed. Evaluation of cooling power and hardening performance has been measured with IVF SmartQuench apparatus, using standard ISO Inconel-600 alloy. The original numerical evaluation method has been introduced in the computation software called SQ Integra. The heat transfer coefficients were used as input data for calculation of microstructural constituents and the hardness profile of cylindrical sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Moreaux and G. Beck, Nouvelles solutions aqueuses pour la trempe des alliages métalliques Importance de l’agitation, Traitement Thermique, 1989, 225, p 45–49

    Google Scholar 

  2. N.A. Hilder, The Behavior of Polymer Quenchants, Heat Treat. Met., 1987, 14(2), p 31–46

    Google Scholar 

  3. R.I.G. Thompson, S.J. Randles, M. Brown, and J.L. Wood, Aspects of the Use of Polyoxy-Alkylene Glycols in Polymer Quenchants, Synth. Lubr., 2006, 17(4), p 277–293

    Article  Google Scholar 

  4. G.E. Totten, C.E. Bates, and N.A. Clinton, Handbook of Quenchants and Quenching Technology, Chapter 1, Introduction to Heat Treating of Steel, ASM International, Materials Park, OH, 1993, p 1–33

    Google Scholar 

  5. S. Segerberg, Polymer Quenchants: Evaluation of Technical and Environmental Properties, Heat Treat. Met., 1986, 13(1), p 1–3

    Google Scholar 

  6. R. Blackwood, M. Lorbach, and E.R. Mueller, Is Something Bugging Your Polymer Quenchant, Heat Treat., 1985, 17, p 40–42

    Google Scholar 

  7. N.A. Hilder, Polymer Quenchants: A Review, Heat Treat. Met., 1986, 13(1), p 15–26

    Google Scholar 

  8. R. Ikkene, Z. Koudil, and M. Mouzali, Pouvoir de refroidissement des solutions de trempe à base de polymères hydrosolubles, Conte Rendu de Chimie, 2008, 11(3), p 297–306

    Article  Google Scholar 

  9. R. Ikkene, Z. Koudil, and M. Mouzali, Evaluation du pouvoir de durcissement d’un bain de trempe à base de polyéthylène glycol dans l’eau, Anal de Chimie, Science des Matériaux, 2009, 33(6), p 493–503

    Google Scholar 

  10. R. Ikkene, Z. Koudil, and M. Mouzali, Measurement of the Cooling Power of Polyethylene Glycol Aqueous Solutions Used as Quenching Media, J. ASTM Int., 2010, 7(2), Paper ID JAI102660

  11. E. Troell and H. Kristofferse, Influence of Ageing and Contamination of Polymer Quenchants on Cooling Characteristics BHM, 2010, 155(3), p 114–118

    Google Scholar 

  12. M. Przylecka and W. Gestwa, The Possibility of Correlation of haRDENING power for Oils and Polymers of Quenching Mediums, Adv. Mater. Sci. Eng., 2009, Article ID 843281, p 7. doi:10.1155/2009/843281

  13. C. Chun-huai, Z. Jing, Analysis of the Segerberg Hardening Power Equation, J. ASTM Int., 2009, 6(1), Paper ID JAI101922

  14. J. Bodin, Cooling Characteristics of Different Quenching Media IVF, Sweden Presentation at the 2nd IMS-VHT International Meeting Yokohama, March 23-25, 2005

  15. I. Felde and T. Reti, Evaluation of Hardening Performance of Cooling Media by Using Inverse Heat Conduction Methods and Property Prediction, J. Mech. Eng., 2010, 56(2), p 77–83

    Google Scholar 

  16. G. Ramesh and K.N. Prabhu, Cooling Characteristics of Liquid Quenchants for Heat Treatment of Castings, Indian Foundry J., 2012, 58(12), p 23–29

  17. G.E. Totten, C.E Bates, and N.A. Clinton, Measuring Hardenability and Quench Severity, Chap. 2, Handbook of Quenchants and Quenching Technology, ASM International, Materials Park, OH, 1993

  18. N.A. Hilder, “Aspects of the use of polyoxyalkylene glycols in polymer quenchants,” Ph.D Thesis, University of Aston, Birmingham, 1988

  19. A.G. Ksenofontov and S.Yu. Shevchenko, Criteria for Evaluating the Cooling Capacity of Quenching Media, Met. Sci. Heat Treat., 1998, 40(10), p 408–411

    Article  Google Scholar 

  20. R.W. Monroe and C.E. Bates, Evaluating Quenchants and Facilities for Hardening Steel, J. Heat. Treat., 1983, 3(2), p 83–99

    Article  Google Scholar 

  21. K.N. Prabhu and P. Fernades, Nanoquenchants for Industrial Heat Treatment, J. Mater. Eng. Perform., 2008, 17(1), p 101–103

    Article  Google Scholar 

  22. K.N. Prabhu and P. Fernandes, Heat Transfer During Quenching and Assessment of Quench Severity: A Review, J. ASTM Int., 2009, 6(1), Paper ID JAI101784

  23. M.A. Grossmann, M. Asimov, and F. Urban, Hardenability and Its Relationship to Quenching and Some Quantitative Data in Hardenability of Alloy Steels, ASM, Materials Park, OH, 1939, p 237–249

    Google Scholar 

  24. N.N. Khavskii and R.K. Zhelokhovtseva, On the Problem of Optimum Cooling in Quenching of Steels, Izvestiya vuzov, Chem. Metall., 1982, 3, p 111–113

    Google Scholar 

  25. J. Bodin and S. Segerberg, Measurement and Evaluation of the Power of Quenching Media for Hardening, Heat Treat. Met., 1993, 20(1), p 15–23

    Google Scholar 

  26. G.E. Totten, M.E. Dakins et al., Cooling Curve Analysis of Synthetic Quenchant: A Historical Perspective, J. Heat Treat., 1988, 6(2), p 87–95

    Article  Google Scholar 

  27. N.I. Kobasko and G.E. Totten, Design of the Industrial Quenching Processes, Trans. Mater. Heat Treat., 2004, 25(5), p 527–530

    Google Scholar 

  28. R.C. Ivanus, Measurement and Evaluation of the Quench Severity During Quenching in Various Quench Media, Metall. Int., 2010, 15(4), p 54–61

    Google Scholar 

  29. M.E. Dakins, G.E. Totten, and R.W. Heins, Cooling Curve Shape Analysis Can Help Evaluate Quenchants, Heat Treat., 1988, 12, p 38–39

    Google Scholar 

  30. N.I. Kobashko, E.C. de Souza, L.C.F. Canale, and G.E. Totten, Vegetable Oil Quenchants: Calculation and Comparison of the Cooling Properties of Series of Vegetable Oils, J. Mech. Eng., 2010, 56(2), p 131–142

    Google Scholar 

  31. ASTM D6482-06, “Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method),” ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA, USA, 19428-2959

  32. IVF Smart Quench Manuel, Swerea IVF AB, Mölndal, Sweden, 2009

  33. ASTM D6200-01, “Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis,” ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA, USA, 19428-2959, 2007

  34. T. Réti and I. Felde, A Non-Linear Extension of the Additivity Rule, Comput. Mater. Sci., 1999, 15(4), p 466–482

    Article  Google Scholar 

  35. R.W. Foreman and A. Meszaros, Polymer Quenching Update, Ind. Heat., 1984, 51(1), p 22–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mouzali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koudil, Z., Ikkene, R. & Mouzali, M. Cooling Capacity Optimization: Calculation of Hardening Power of Aqueous Solution Based on Poly(N-Vinyl-2-Pyrrolidone). J. of Materi Eng and Perform 23, 551–559 (2014). https://doi.org/10.1007/s11665-013-0775-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0775-9

Keywords

Navigation