Advertisement

Journal of Materials Engineering and Performance

, Volume 23, Issue 2, pp 413–420 | Cite as

Effect of Tool Rotation Rate on Microstructure and Mechanical Behavior of Friction Stir Spot-Welded Al/Cu Composite

  • M. Shiraly
  • M. Shamanian
  • M. R. Toroghinejad
  • M. Ahmadi Jazani
Article

Abstract

In this study, the friction stir spot welding of Al/Cu composite produced by accumulative roll-bonding process was performed using a triangular pin with no features. The influence of tool rotation rate on the microstructure, surface hardness, and tensile shear strength was examined. The results indicated that the weld made at lower tool rotation rate was not bonded because there was no intermixing between the upper and lower sheets. The maximum shear failure load increased with the increasing tool rotation rate, and reached a maximum value at 1400 rpm, which can be ascribed to the increasing area and effective length (d) of stir zone (SZ). The experimental observations showed the presence of the intermetallic compounds (Al2Cu and AlCu3) in the SZ. It was concluded that the intermetallic compounds, accompanied by the material crushing, increased the hardness of the SZ.

Keywords

ARB process Al/Cu composite FSSW shear failure load tool rotation rate 

References

  1. 1.
    S. Bozzi, A.L. Helbert-Etter, T. Baudin, V. Klosek, J.G. Kerbiguet, and B. Criqui, Influence of FSSW Parameters on Fracture Mechanisms of 5182 Aluminium Welds, J. Mater. Process. Technol., 2010, 210(11), p 1429–1435CrossRefGoogle Scholar
  2. 2.
    D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng, and M.L. Santella, Structure-Properties Relations in Spot Friction Welded (Also Known as Friction Stir Spot Welded) 6111 Aluminum, J. Mater. Sci. Eng. A., 2006, 441(1-2), p 79–96CrossRefGoogle Scholar
  3. 3.
    D.A. Wang and C.H. Chen, Fatigue Lives of Friction Stir Spot Welds in Aluminum 6061-T6 Sheets, J. Mater. Process. Technol., 2009, 209(1), p 367–375CrossRefGoogle Scholar
  4. 4.
    Y. Uematsua, K. Tokajia, Y. Tozakib, and Y. Nakashima, Fatigue Behavior of Dissimilar Friction Stir Spot Weld Between A6061 and SPCC Welded by a Scrolled Groove Shoulder Tool, J. Proced. Eng., 2010, 2(1), p 193–201CrossRefGoogle Scholar
  5. 5.
    V.X. Tran, J. Pan, and T. Pan, Fatigue Behavior of Spot Friction Welds in Lap-Shear and Cross-Tension Specimens of Dissimilar Aluminum Sheets, Int. J. Fatigue, 2010, 32(7), p 1022–1041CrossRefGoogle Scholar
  6. 6.
    S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, and J.G. Kerbiguet, Intermetallic Compounds in Al 6016/IF-Steel Friction Stir Spot Welds, J. Mater. Sci. Eng. A, 2010, 527(16-17), p 4505–4509CrossRefGoogle Scholar
  7. 7.
    M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, and K. Janghorban, Investigation of Structure and Mechanical Properties of Multi-Layered Al/Cu Composite Produced by Accumulative Roll Bonding (ARB) Process, J. Compos. Sci. Technol., 2008, 68(9), p 2003–2009CrossRefGoogle Scholar
  8. 8.
    M.R. Toroghinejad, F. Ashrafizadeh, R. Jamaati, M. Hoseini, and J.A. Szpunar, Textural Evolution of Nanostructured AA5083 Produced by ARB, J. Mater. Sci. Eng. A, 2012, 556, p 351–357CrossRefGoogle Scholar
  9. 9.
    Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, and S. Murata, Effect of Re-filling Probe Hole on Tensile Failure and Fatigue Behavior of Friction Stir Spot Welded Joints in Al-Mg-Si Alloy, Int. J. Fatigue, 2008, 30(10-11), p 1956–1966CrossRefGoogle Scholar
  10. 10.
    V.X. Tran, J. Pan, and T. Pan, Fatigue Behavior of Aluminum 5754-O and 6111-T4 Spot Friction Welds in Lap-Shear Specimens, Int. J. Fatigue, 2008, 30(12), p 2175–2190CrossRefGoogle Scholar
  11. 11.
    V.X. Tran, J. Pan, and T. Pan, Effects of Processing Time on Strengths and Failure Modes of Dissimilar Spot Friction Welds Between Aluminum 5754-O and 7075-T6 Sheets, J. Mater. Process. Technol., 2009, 209(8), p 3724–3739CrossRefGoogle Scholar
  12. 12.
    H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets, Int. J. Mach. Tools Manuf., 2009, 49(11), p 814–823CrossRefGoogle Scholar
  13. 13.
    Y. Tozaki, Y. Uematsu, and K. Tokaji, Effect of Tool Geometry on Microstructure and Static Strength in Friction Stir Spot Welded Aluminium Alloys, Int. J. Mach. Tools Manuf., 2007, 47(15), p 2230–2236CrossRefGoogle Scholar
  14. 14.
    M. Amirizad, A.H. Kokabi, M. Abbasi Gharacheh, R. Sarrafi, B. Shalchi, and M. Azizieh, Evaluation of Microstructure and Mechanical Properties in Friction Stir Welded A356+15%SiCp Cast Composite, J. Mater. Lett., 2006, 60(2), p 565–568CrossRefGoogle Scholar
  15. 15.
    W. Yuan, R.S. Mishra, and S. Webb, Effect of Tool Design and Process Parameters on Properties of Al Alloy 6016 Friction Stir Spot Welds, J. Mater. Process. Technol., 2011, 211(6), p 972–977CrossRefGoogle Scholar
  16. 16.
    Q. Yang, S. Mironov, Y.S. Sato, and K. Okamoto, Material Flow During Friction Stir Spot Welding, J. Mater. Sci. Eng. A., 2010, 527(16-17), p 4389–4398CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • M. Shiraly
    • 1
  • M. Shamanian
    • 1
  • M. R. Toroghinejad
    • 1
  • M. Ahmadi Jazani
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations