Skip to main content
Log in

Nanoindentation Mechanical Properties of Indium-Alloyed Cu-Based Bulk Metallic Glasses

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, two Indium-alloyed Cu-based bulk metallic glasses, Cu54Zr37Ti8In1 and Cu50Zr37Ti8In5, have been evaluated with nanoindentation testing. Both bulk metallic glasses have homogenous nature in structure. Both hardness and Young’s modulus of bulk metallic glasses do not show a loading rate-dependent. Addition of In decreases hardness and Young’s modulus, but increases creep-resistance of bulk metallic glasses. Indentation creep of two bulk metallic glasses has also been investigated. The displacement-time curves of creep processes were described with generalized Kelvin model. The creep displacement, compliance spectrum, and retardation spectrum for each bulk metallic glass were discussed comparatively. The results showed that Cu50Zr37Ti8In5 has better creep-resistance at room temperature and a more relaxed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.H. Bae, H.K. Lim, S.H. Kim, D.H. Kim, and W.T. Kim, Mechanical Behavior of a Bulk Cu-Ti-Zr-Ni-Si-Sn Metallic Glass Forming Nano-Crystal Aggregate Bands During Deformation in the Supercooled Liquid Region, Acta Mater., 2002, 50(7), p 1749–1759

    Article  Google Scholar 

  2. C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. Inoue, A Novel Cu-Based BMG Composite with High Corrosion Resistance and Excellent Mechanical Properties, Acta Mater., 2006, 54(14), p 3713–3719

    Article  Google Scholar 

  3. N. Chen, D.V. Louzguine-Luzgin, G.Q. Xie, T. Wada, and A. Inoue, Influence of Minor Si Addition on the Glass-Forming Ability and Mechanical Properties of Pd40Ni40P20 Alloy, Acta Mater., 2009, 57(9), p 2775–2780

    Article  Google Scholar 

  4. N. Nishiyama and A. Inoue, Glass-Forming Ability of Pd42.5Cu30Ni7.5P20 Alloy with a Low Critical Cooling Rate of 0.067 K/s, Appl. Phys. Lett., 2002, 80(4), p 568–570

    Article  Google Scholar 

  5. H. Choi-Yim, R. Busch, U. Koster, and W.L. Johnson, Synthesis and Characterization of Particulate Reinforced Zr57Nb5Al10Cu15.4Ni12.6 Bulk Metallic Glass Composites, Acta Mater., 1999, 47(8), p 2455–2462

    Article  Google Scholar 

  6. A. Castellero, B. Moser, D.I. Uhlenhaut, F.H. Dalla Torre, and J.F. Loffler, Room-Temperature Creep and Structural Relaxation of Mg-Cu-Y Metallic Glasses, Acta Mater., 2008, 56(15), p 3777–3785

    Article  Google Scholar 

  7. Z.P. Lu, T.T. Goh, Y. Li, and S.C. Ng, Glass Formation in La-Based La-Al-Ni-Cu-(Co) Alloys by Bridgman Solidification and Their Glass Forming Ability, Acta Mater., 1999, 47(7), p 2215–2224

    Article  Google Scholar 

  8. Z. Bian, H. Kato, C.L. Qin, W. Zhang, and A. Inoue, Cu-Hf-Ti-Ag-Ta Bulk Metallic Glass Composites and Their Properties, Acta Mater., 2005, 53(7), p 2037–2048

    Article  Google Scholar 

  9. A. Castellero, T.A. Baser, J. Das, P. Matteis, J. Eckert, L. Battezzati and M. Baricco, Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100-xAlx (x = 4, 5, 7) bulk metallic glasses, J. Alloy. Compd., 2011, 509, p S99-S104

  10. D.V. Louzguine-Luzgin, G. Xie, Q. Zhang, C. Suryanarayana, and A. Inoue, Formation, Structure, and Crystallization Behavior of Cu-Based Bulk Glass-Forming Alloys, Metall. Mater. Trans. A, 2010, 41(7), p 1664–1669

    Article  Google Scholar 

  11. J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, and Z.F. Zhang, High Strength Ductile Cu-Base Metallic Glass, Intermetallics, 2006, 14(8-9), p 876–881

    Article  Google Scholar 

  12. K. Georgarakis, A.R. Yavari, D.V. Louzguine-Luzgin, J. Antonowicz, M. Stoica, Y. Li, M. Satta, A. LeMoulec, G. Vaughan, and A. Inoue, Atomic Structure of Zr-Cu Glassy Alloys and Detection of Deviations from Ideal Solution Behavior with Al Addition by X-Ray Diffraction Using Synchrotron Light in Transmission, Appl. Phys. Lett., 2009, 94(19), p 1919121–1919123

    Article  Google Scholar 

  13. M.M. Trexler and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55(8), p 759–839

    Article  Google Scholar 

  14. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems, Acta Mater., 2001, 49(14), p 2645–2652

    Article  Google Scholar 

  15. C.A. Schuh and T.G. Nieh, A Nanoindentation Study of Serrated Flow in Bulk Metallic Glasses, Acta Mater., 2003, 51(1), p 87–99

    Article  Google Scholar 

  16. T. Burgess, K.J. Laws, and M. Ferry, Effect of Loading Rate on the Serrated Flow of a Bulk Metallic Glass During Nanoindentation, Acta Mater., 2008, 56(17), p 4829–4835

    Article  Google Scholar 

  17. B.C. Wei, L.C. Zhang, T.H. Zhang, D.M. Xing, J. Das, and J. Eckert, Strain Rate Dependence of Plastic Flow in Ce-Based Bulk Metallic Glass During Nanoindentation, J. Mater. Res., 2007, 22(2), p 258–263

    Article  Google Scholar 

  18. K.W. Chen, S.R. Jian, P.J. Wei, J.S.C. Jang, and J.F. Lin, The study of Loading Rate Effect of A Cu-Based Bulk Metallic Glass During Nanoindentation, J. Alloy. Compd., 2010, 504, p S69–S73

    Article  Google Scholar 

  19. J. Sort, J. Fornell, W. Li, S. Surinach, and M.D. Baro, Influence of the Loading Rate on the Indentation Response of Ti-Based Metallic Glass, J. Mater. Res., 2009, 24(3), p 918–925

    Article  Google Scholar 

  20. W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, and Y.Z. He, The Characterization of Creep and Time-Dependent Properties of Bulk Metallic Glasses Using Nanoindentation, Mater. Sci. Eng. A, 2008, 478(1-2), p 371–375

    Article  Google Scholar 

  21. S. Lesz, R. Szewczyk, D. Szewieczek, and A. Bienkowski, The Structure and Magnetoelastic Properties of the Fe-Based Amorphous Alloy with Hf Addition, J. Mater. Process. Technol., 2004, 157, p 743–748

    Article  Google Scholar 

  22. L. Liu, K.C. Chan, M. Sun, and Q. Chen, The Effect of the Addition of Ta on the Structure, Crystallization and Mechanical Properties of Zr-Cu-Ni-Al-Ta Bulk Metallic Glasses, Mater. Sci. Eng. A, 2007, 445, p 697–706

    Article  Google Scholar 

  23. W. Zhou, X. Lin, and J.F. Li, Effects of Ag Addition on Crystallization, Microstructure and Mechanical Properties of Zr-Cu-Ni-Al-Ag Bulk Metallic Glasses, J. Alloy Compd., 2013, 552, p 102–106

    Article  Google Scholar 

  24. J. Wu, Y. Pan, J. Huang, and J. Pi, Non-Isothermal Crystallization Kinetics and Glass-Forming Ability of Cu-Zr-Ti-In Bulk Metallic Glasses, Thermochim. Acta, 2013, 552, p 15–22

    Article  Google Scholar 

  25. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, and A.I. Tyurin, Serrated Plastic Flow During Nanoindentation of a Bulk Metallic Glass, Scr. Mater., 2001, 45(8), p 947–952

    Article  Google Scholar 

  26. L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, and G.S. Yu, Strain Rate-Dependent Compressive Deformation Behavior of Nd-Based Bulk Metallic Glass, Intermetallics, 2005, 13(8), p 827–832

    Article  Google Scholar 

  27. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20

    Article  Google Scholar 

  29. R. Chen, F.Q. Yang, G.J. Fan, and P.K. Liaw, Hardness Variation Across a Zr57Ti5Cu20Ni8Al10 Bulk Metallic Glass, J. Mater. Sci., 2007, 42(6), p 2208–2211

    Article  Google Scholar 

  30. J.L. Wu, Y. Pan and J.H. Pi, Evaluation of Cu-Zr-Ti-In Bulk Metallic Glasses via Nanoindentation, J. Mater. Eng. Perform., DOI: 10.1007/s11665-013-0519-x

  31. W.H. Wang, Correlations Between Elastic Moduli and Properties in Bulk Metallic Glasses, J. Appl. Phys., 2006, 99(9), p 0935061–09350610

    Google Scholar 

  32. W.H. Wang, Bulk Metallic Glasses with Functional Physical Properties, Adv. Mater., 2009, 21(45), p 4524–4544

    Article  Google Scholar 

  33. W. Martienssen and H. Warlimont, Ed., Springer Handbook of Condensed Matter and Materials Data, Springer, Berlin, 2005, p 45–158

    Book  Google Scholar 

  34. N. Zheng, R.T. Qu, S. Pauly, M. Calin, T. Gemming, Z.F. Zhang, and J. Eckert, Design of Ductile Bulk Metallic Glasses by Adding “Soft” Atoms, Appl. Phys. Lett., 2012, 100(14), p 1419011–1419014

    Google Scholar 

  35. S. Yang, Y.W. Zhang, and K.Y. Zeng, Analysis of Nanoindentation Creep for Polymeric Materials, J. Appl. Phys., 2004, 95(7), p 3655–3666

    Article  Google Scholar 

  36. B.C. Wei, T.H. Zhang, W.H. Li, D.M. Xing, L.C. Zhang, and Y.R. Wang, Indentation Creep Behavior in Ce-Based Bulk Metallic Glasses at Room Temperature, Mater. Trans., 2005, 46(12), p 2959–2962

    Article  Google Scholar 

  37. K.M. Bernatz, I. Echeverria, S.L. Simon, and D.J. Plazek, Characterization of the Molecular Structure of Amorphous Selenium Using Recoverable Creep Compliance Measurements, J. Non-Cryst. Solids, 2002, 307, p 790–801

    Article  Google Scholar 

  38. L.C. Zhang, B.C. Wei, D.M. Xing, T.H. Zhang, W.H. Li, and Y. Liu, The Characterization of Plastic Deformation in Ce-Based Bulk Metallic Glasses, Intermetallics, 2007, 15(5-6), p 791–795

    Article  Google Scholar 

  39. Y.D. Sun, Z.Q. Li, J.S. Liu, M.Q. Cong, and J.Y. Qin, Indentation Creep Behaviors of Mg61Cu28Gd11 and (Mg61Cu28Gd11)99.5Sb0.5 Bulk Metallic Glasses at Room Temperature, J. Rare Earth, 2011, 29(3), p 253–258

    Article  Google Scholar 

Download references

Acknowledgments

Thanks for financial support from the National Natural Science Foundation of China (Grant No. 50971041). The authors also thank Computherm LLC, USA for supporting us with Pandat® software and thermodynamic database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Pan, Y. & Pi, J. Nanoindentation Mechanical Properties of Indium-Alloyed Cu-Based Bulk Metallic Glasses. J. of Materi Eng and Perform 23, 486–492 (2014). https://doi.org/10.1007/s11665-013-0765-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0765-y

Keywords

Navigation