Skip to main content
Log in

Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Miao, L.X. Hu, G.J. Wang, and E.D. Wang, Fabrication of Excellent Mechanical Properties AZ31 Magnesium Alloy Sheets by Conventional Rolling and Subsequent Annealing, Mater. Sci. Eng., A, 2011, 528, p 6694–6701

    Article  Google Scholar 

  2. M.B. Kannan and R.K. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314

    Article  Google Scholar 

  3. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    Article  Google Scholar 

  4. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of Biocompatible Porous Ti and Mg, Scr. Mater., 2001, 45, p 1147–1153

    Article  Google Scholar 

  5. N.E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, and A. Lewenstam, Magnesium: An Update on Physiological, Clinical and Analytical Aspects, Clin. Chim. Acta, 2000, 294, p 1–26

    Article  Google Scholar 

  6. J.P. Knochel, Disorders of Magnesium Metabolism, Harrisons Principles of Internal Medicine, McGraw-Hill, New York, 1998, p 2263-2265

  7. A. Mauskop and B.M. Altura, Role of Magnesium in the Pathogenesis and Treatment of Migraines, Clin. Neurosci., 1998, 5, p 24–27

    Google Scholar 

  8. T.L.P. Slottow, R. Pakala, T. Okabe, D. Hellinga, R.J. Lovec, R. Waksman et al., Optical Coherence Tomography and Intravascular Ultrasound Imaging of Bioabsorbable Magnesium Stent Degradation in Porcine Coronary Arteries, Cardiovasc. Revascularization Med., 2008, 9, p 248–254

    Article  Google Scholar 

  9. A. Repici and G. Rando, Stent for nonmalignant leaks, perforations, and ruptures, Tech. Gastrointest. Endosc., 2010, 12, p 237–245

    Article  Google Scholar 

  10. J.M. Seitz, R. Eifle, J. Stahl, M. Kietzmann, and Fr.W. Bach, Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices, Acta Biomater., 2012, 8, p 3852–3864

    Article  Google Scholar 

  11. T. Itoi, T. Inazawa, Y. Kuroda, M. Yamasaki, Y. Kawamura, and M. Hirohashi, Tensile Property and Cold Formability of a Mg96Zn2Y2 Alloy Sheet with a Long-Period Ordered Phase, Mater. Lett., 2010, 64, p 2277–2280

    Article  Google Scholar 

  12. J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Höche, et al., Fast Escape of Hydrogen from Gas Cavities Around Corroding Magnesium Implants. Acta Biomater., 2012, doi:10.1016/j.actbio.2012.10.008

  13. L. Choudhary and R.K. Raman, Magnesium Alloys as Body Implants: Fracture Mechanism Under Dynamic and Static Loadings in a Physiological Environment, Acta Biomater., 2012, 8, p 916–923

    Article  Google Scholar 

  14. W. Wu, D. Gastaldi, K. Yang, L.L. Tan, L. Petrini, and F. Migliavacca, Finite Element Analyses for Design Evaluation of Biodegradable Magnesium Alloy Stents in Arterial Vessels, Mater. Sci. Eng., B, 2011, 176, p 1733–1740

    Article  Google Scholar 

  15. P. Lu, H.N. Fan, Y. Liu, L. Cao, X.F. Wu, and X.H. Xu, Controllable Biodegradability, Drug Release Behavior and Hemocompatibility of PTX-Eluting Magnesium Stents, Colloids Surf. B, 2011, 83, p 23–28

    Article  Google Scholar 

  16. Y. Xin, T. Hu, and P.K. Chu, Degradation Behavior of Pure Magnesium in Simulated Body Fluids with Different Concentrations of HCO3 , Corros. Sci., 2011, 53, p 1522–1528

    Article  Google Scholar 

  17. S. Hiromoto and M. Tomozawa, Hydroxyapatite Coating of AZ31 Magnesium Alloy by a Solution Treatment and its Corrosion Behavior in NaCl Solution, Surf. Coat. Technol., 2011, 205, p 4711–4719

    Article  Google Scholar 

  18. C. Lin and S. Yen, Biomimetic Growth of Apatite on Electrolytic TiO2 Coatings in Simulated Body Fluid, Mater. Sci. Eng., C, 2006, 26, p 54–64

    Article  Google Scholar 

  19. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915

    Article  Google Scholar 

  20. R. Rettig and S. Virtanen, Composition of Corrosion Layers on a Magnesium Rare-Earth Alloy in Simulated Body Fluids, J. Biomed. Mater. Res., 2009, 88A, p 359–369

    Article  Google Scholar 

  21. H.F. Zhang, M. Liu, H.S. Fan, and X.D. Zhang, An Efficient Method to Synthesize Carbonated Nano Hydroxyapatite Assisted by Poly(ethylene glycol), Mater. Lett., 2012, 75, p 26–28

    Article  Google Scholar 

  22. Y. Xin, K. Huo, H. Tao, G. Tang, and P.K. Chu, Influence of Aggressive Ions on the Degradation Behavior of Biomedical Magnesium Alloy in Physiological Environment, Acta Biomater., 2008, 4, p 2008–2015

    Article  Google Scholar 

  23. J. Weng, Q. Liu, J.G.C. Wolke, X. Zhang, and K.D. Groot, Formation and Characteristics of the Apatite Layer on Plasma-Sprayed Hydroxyapatite Coatings in Simulated Body Fluid, Biomaterials, 1997, 18, p 1027–1035

    Article  Google Scholar 

  24. G. Baril and N. Pebere, The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions, Corros. Sci., 2001, 43, p 471–484

    Article  Google Scholar 

  25. F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, and G. Trabanelli, Electrochemical Behavior of a Magnesium Alloy Containing Rare Earth Elements, J. Appl. Electrochem., 2006, 36, p 195–204

    Article  Google Scholar 

  26. S. Jin, S. Amira, and E. Ghali, Electrochemical Impedance Spectroscopy Evaluation of the Corrosion Behavior of Die Cast and Thixocast AXJ530 Magnesium Alloy in Chloride Solution, Adv. Eng. Mater., 2007, 9, p 75–83

    Article  Google Scholar 

  27. G. Socol, P. Torricelli, B. Bracci, M. Lliescu, F. Miroiu, A. Bigi et al., Biocompatible Nanocrystalline Octacalcium Phosphate Thin Films Obtained by Pulsed Laser Deposition, Biomaterials, 2004, 25, p 2539–2545

    Article  Google Scholar 

  28. G.L. Song and A. Atrens, Understanding Magnesium Corrosion: A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  29. ASM Handbook, Volume 13A, Corrosion: Fundamentals, Testing and Protection. ASM International, Materials Park, 2003

Download references

Acknowledgment

This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2011C069)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Li, Q., Zhang, H. et al. Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments. J. of Materi Eng and Perform 23, 181–186 (2014). https://doi.org/10.1007/s11665-013-0751-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0751-4

Keywords

Navigation