Skip to main content
Log in

Effect of SiC Nanoparticles on Bond Strength of Cold Roll Bonded IF Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, cold roll bonding process characteristics of IF steel strips, such as bond strength, threshold deformation, undulation of peeling force, and peeled surface, in the presence of SiC nanoparticles were examined and compared to those of an IF steel strip without nanoparticles. The bond strength was evaluated by the peeling test and scanning electron microscopy. It was found that when the thickness reduction was increased, the peeling force of IF steel strips improved. The results also indicated that the presence of silicon carbide nanoparticles decreased the bond strength of IF steel strips when compared to the strips without nanoparticles for the same thickness reduction. When the thickness reduction was increased, the undulation of average peeling force values increased at a constant nanoparticle content. Also, the strips without nanoparticles had a lower undulation value as compared to the strips with SiC nanoparticles. In addition, in the presence of silicon carbide, when the nanoparticles’ content was increased, the undulation of average peeling force values decreased at a constant thickness reduction. Finally, it was found that the bond strength of IF steel strips was less than that of aluminum and copper strips. This was attributed to their crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Ghosh, B. Bhattacharya, and R.K. Ray, Comparative Study of Precipitation Behavior and Texture Formation in Cold Rolled-Batch Annealed and Cold Rolled-Continuous Annealed Interstitial Free High Strength Steels, Scripta Mater., 2007, 56, p 657–660

    Article  CAS  Google Scholar 

  2. P. Ghosh, R.K. Ray, B. Bhattacharya, and S. Bhargava, Precipitation and Texture Formation in Two Cold Rolled and Batch Annealed Interstitial-Free High Strength Steels, Scripta Mater., 2006, 55, p 271–274

    Article  CAS  Google Scholar 

  3. G. Purcek, O. Saray, I. Karman, and H.J. Maier, High Strength and High Ductility of Ultrafine-Grained, Interstitial-Free Steel Produced by ECAE and Annealing, Metall. Mater. Trans. A, 2012, 43, p 1884–1894

    Article  CAS  Google Scholar 

  4. R. Jamaati and M.R. Toroghinejad, Manufacturing of High-Strength Aluminum-Alumina Composite by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2010, 527, p 4146–4151

    Article  Google Scholar 

  5. R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2010, 31, p 4816–4822

    Article  CAS  Google Scholar 

  6. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process, Mater. Sci. Eng. A, 2011, 528, p 2143–2148

    Article  Google Scholar 

  7. R. Jamaati and M.R. Toroghinejad, Application of ARB Process for Manufacturing High-Strength, Finely Dispersed and Highly Uniform Cu/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527, p 7430–7435

    Article  Google Scholar 

  8. R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, An Alternative Method of Processing MMCs by CAR Process, Mater. Sci. Eng. A, 2010, 527, p 2720–2724

    Article  Google Scholar 

  9. R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, Application of Anodizing and CAR Processes for Manufacturing Al/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527, p 3857–3863

    Article  Google Scholar 

  10. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, CAR Process: A Technique for Significant Enhancement of As-Cast MMC Properties, Mater. Charact., 2011, 62, p 1228–1234

    Article  CAS  Google Scholar 

  11. M. Hashemi, R. Jamaati, and M.R. Toroghinejad, Microstructure and Mechanical Properties of Al/SiO2 Composite Produced by CAR Process, Mater. Sci. Eng. A, 2012, 532, p 275–281

    Article  CAS  Google Scholar 

  12. R. Jamaati and M.R. Toroghinejad, Fabrication of MMC Strip by CRB Process, J. Mater. Eng. Perform., 2012, 21, p 859–864

    Article  CAS  Google Scholar 

  13. R. Jamaati and M.R. Toroghinejad, Microstructure and Mechanical Properties of Al/Al2O3 MMC Produced by Anodising and Cold Roll Bonding, Mater. Sci. Technol., 2011, 27, p 1648–1652

    Article  CAS  Google Scholar 

  14. L.R. Vaidyanath and D.R. Milner, Significance of Surface Preparation in Cold Pressure Welding of Metals, Br. Weld. J., 1960, 7, p 1–6

    Google Scholar 

  15. J.A. Cave and J.D. Williams, The Mechanisms of Cold Pressure Welding by Rolling, J. Inst. Met., 1975, 101, p 203–207

    Google Scholar 

  16. L.R. Vaidyanath, M.G. Nicholas, and D.R. Milner, Pressure Welding by Rolling, Br. Weld. J., 1959, 6, p 13–28

    Google Scholar 

  17. D. Pan, K. Gao, and J. Yu, Cold Roll Bonding of Bimetallic Sheet and Strips, Mater. Sci. Technol., 1989, 5, p 934–939

    Article  CAS  Google Scholar 

  18. N.D. Lukaschkin, A.P. Borissow, and A.I. Elrikh, The System Analysis of Metal Forming Technique in Welding Processes, J. Mater. Process. Technol., 1997, 66, p 246–269

    Article  Google Scholar 

  19. H.Y. Wu, S. Lee, and J.Y. Wang, Solid State Bonding of Iron-Base Alloy, Steel–Brass and Aluminum Alloy, J. Mater. Process. Technol., 1998, 75, p 173–179

    Article  Google Scholar 

  20. R. Jamaati and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng. A, 2010, 527, p 2320–2326

    Article  Google Scholar 

  21. R. Jamaati and M.R. Toroghinejad, Effect of Friction, Annealing Conditions and Hardness on the Bond Strength of Al-Al Strips Produced by Cold Roll Bonding Process, Mater. Des., 2010, 31, p 4508–4513

    Article  CAS  Google Scholar 

  22. R. Jamaati and M.R. Toroghinejad, Effect of Al2O3 Nano-Particles on the Bond Strength in CRB Process, Mater. Sci. Eng. A, 2010, 527, p 4858–4863

    Article  Google Scholar 

  23. R. Jamaati and M.R. Toroghinejad, The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips, J. Mater. Eng. Perform., 2011, 20, p 191–197

    Article  CAS  Google Scholar 

  24. R. Jamaati and M.R. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27, p 1101–1108

    Article  CAS  Google Scholar 

  25. M.A. Soltani, R. Jamaati, and M.R. Toroghinejad, The Influence of TiO2 Nano-Particles on Bond Strength of Cold Roll Bonded Aluminum Strips, Mater. Sci. Eng. A, 2012, 550, p 367–374

    Article  CAS  Google Scholar 

  26. M. Alizadeh and M.H. Paydar, Study on the Effect of Presence of TiH2 Particles on the Roll Bonding Behavior of Aluminum Alloy Strips, Mater. Des., 2009, 30, p 82–86

    Article  CAS  Google Scholar 

  27. C. Lu, K. Tieu, and D. Wexler, Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-Sized SiO2 Particles, J. Mater. Process. Technol., 2009, 209, p 4830–4834

    Article  CAS  Google Scholar 

  28. M. Rezayat and A. Akbarzadeh, Bonding Behavior of Al-Al2O3 Laminations During Roll Bonding Process, Mater. Des., 2012, 36, p 874–879

    Article  CAS  Google Scholar 

  29. C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, and M. Göken, Influence of Nanoparticle Reinforcement on the Mechanical Properties of Ultrafine-Grained Aluminium Produced by ARB, Mater. Sci. Forum, 2011, 667–669, p 725–730

    Google Scholar 

  30. N. Bay, Cold Welding. Part I: Characteristic, Bonding Mechanisms, Bond Strength, Met. Constr., 1986, 18, p 369–372

    CAS  Google Scholar 

  31. N. Bay, Cold Welding. Part II: Process Variation and Application, Met. Constr., 1986, 18, p 486–490

    Google Scholar 

  32. P.K. Wright, D.A. Snow, and C.K. Tay, Interfacial Conditions and Bond Strength in Cold Pressure Welding by Rolling, Met. Technol., 1978, 5, p 24–31

    Google Scholar 

  33. L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9, p 023001(11 pp)

    Google Scholar 

  34. W.D. Callister and D.G. Rethwisch, Materials Science Engineering: An Introduction, 8th ed., John Wiley and Sons, New York, 2010

    Google Scholar 

  35. D.R. Askeland, P.P. Fulay, and W.J. Wright, The Science and Engineering of Materials, 6th ed., Global Engineering, New York, 2011

    Google Scholar 

  36. H.A. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 30, p 2s–10s

    Google Scholar 

  37. M. Abbasi and M.R. Toroghinejad, Effects of Processing Parameters on the Bond Strength of Cu/Cu Roll-Bonded Strips, J. Mater. Process. Technol., 2010, 210, p 560–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamaati, R., Toroghinejad, M.R. & Edris, H. Effect of SiC Nanoparticles on Bond Strength of Cold Roll Bonded IF Steel. J. of Materi Eng and Perform 22, 3348–3356 (2013). https://doi.org/10.1007/s11665-013-0650-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0650-8

Keywords

Navigation