Skip to main content
Log in

Gamma Ray Irradiation Effects on the Ferroelectric and Piezoelectric Properties of Barium Titanate Ceramics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of heavy dose gamma ray irradiation on the ferroelectric and piezoelectric properties of barium titanate (BaTiO3) ceramics has been investigated. It is found that on irradiation the ferroelectric property decreases and polarization behavior shows double loop hysteresis. The piezoelectric properties including piezoelectric charge constant (d 33), electromechanical coupling coefficient (K p), and electrostrictive strain also decreases. The most probable reason for decreased ferroelectric and piezoelectric properties may be the occurrence of random local strain upon irradiation. The phase transition temperature from ferroelectric to paraelectric decreases and degree of diffuseness increases on irradiation. The thermoluminescence (TL) glow curve showed a peak at 226 °C showing that irradiated BaTiO3 has TL properties. Presence of TL clearly indicates that gamma ray irradiation causes trapped holes and electrons and these trapped charges are released at temperature higher than 226 °C. The creation of trapped holes and electrons effected the microstrain of BaTiO3 ceramic leading to change in the ferroelectric and piezoelectric properties of BaTiO3 ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead Free Piezoceramics, Nature, 2004, 432, p 84–87

    Article  CAS  Google Scholar 

  2. M.D. Maeder, D. Damjanovic, and N. Setter, Lead Free Piezoelectric Materials, J. Electroceram., 2004, 13, p 385–392

    Article  CAS  Google Scholar 

  3. J.F. Scott, Leading the Way to Lead Free, ChemPhysChem, 2010, 11, p 341–343

    Article  CAS  Google Scholar 

  4. W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, Large Piezoelectric Coefficient in (Ba1−xCax)(Ti0.96Sn0.04)O3 Lead-Free Ceramics, J. Am. Ceram. Soc., 2011, 94, p 4131–4133

    Article  CAS  Google Scholar 

  5. J. Hao, W. Bai, W. Li, and J. Zhai, Correlation Between the Microstructure and Electrical Properties in High-Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Piezoelectric Ceramics, J. Am. Ceram. Soc., 2012, 95, p 1998–2006

    Article  CAS  Google Scholar 

  6. D.H. Yoon and B.I. Lee, BaTiO3 Properties and Powder Characteristics for Ceramic Capacitors, J. Ceram. Process. Res., 2002, 3, p 41–47

    Google Scholar 

  7. H. Pinto, A. Stashans, and P. Sanchez, Theoretical Studies of Impurity Doped and Undoped BaTiO3 and SrTiO3 Crystals, Defects and Surface Induced Effects in Advanced Perovskites, NATO Science Series, High Technology, Vol 77, G. Borstel, ed., Kluwer, Dordrecht, 2000, p 67–71

  8. A. von Hippel, Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate, Rev. Mod. Phys., 1950, 22, p 221–237

    Article  Google Scholar 

  9. L.B. Kong, T.S. Zhang, J. Ma, and F. Boey, Progress in Synthesis of Ferroelectric Ceramic Materials Via High-Energy Mechanochemical Technique, Prog. Mater. Sci., 2008, 53, p 207–322

    Article  CAS  Google Scholar 

  10. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder, Jpn. J. Appl. Phys., 2007, 46, p L97–L98

    Article  CAS  Google Scholar 

  11. H. Takahasi, Y. Numamoto, J. Taaani, K. Maatsuta, J. Qiu, and S. Tsurekawa, Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering, Jpn. J. Appl. Phys., 2006, 45, p L30–L32

    Article  Google Scholar 

  12. W. Cai, C. Fu, J. Gao, and X. Deng, Effect of Mn Doping on the Dielectric Properties of BaZr0.2Ti0.8O3 Ceramics, J. Mater. Sci.: Mater. Electron., 2010, 21, p 317–325

    Article  CAS  Google Scholar 

  13. G. Yao, X. Wang, T. Sun, and L. Li, Effects of CaZrO3 on X8R Nonreducible BaTiO3-Based Dielectric Ceramics, J. Am. Ceram. Soc., 2011, 94, p 3856–3862

    Article  CAS  Google Scholar 

  14. S.W. Zhang, H. Zhang, B.P. Zhang, and S. Yang, Phase-Transition Behavior and Piezoelectric Properties of Lead-Free (Ba0.95Ca0.05)(Ti1−xZrx)O3, J. Alloys Compd., 2010, 506, p 131–135

    Article  CAS  Google Scholar 

  15. A.K. Nath and N. Medhi, Piezoelectric Properties of Environmental Friendly Bismuth Doped Barium Titanate Ceramics, Mater. Lett., 2012, 73, p 75–77

    Article  CAS  Google Scholar 

  16. V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic, V. Paunovic, M. Miljkovic, B. Jordovic, and L. Zivkovic, Influence of Rare-Earth Dopants on Barium Titanate Ceramics Microstructure and Corresponding Electrical Properties, J. Am. Ceram. Soc., 2010, 93, p 132–137

    Article  CAS  Google Scholar 

  17. N. Horchidan, A.C. Ianculescu, L.P. Curecheriu, F. Tudorache, V. Musteata, S. Stoleriu, N. Dragan, D. Crisan, S. Tascu, and L. Mitoseriu, Preparation and Characterization of Barium Titanate Stannate Solid Solutions, J. Alloys Compd., 2011, 509, p 4731–4737

    Article  CAS  Google Scholar 

  18. A.K. Nath and N. Medhi, Density Variation and Piezoelectric Properties of Ba(Ti1−xSnx)O3 Ceramics Prepared from Nanocrystalline Powders, Bull. Mater. Sci., 2012, 35, p 847–852

    Article  CAS  Google Scholar 

  19. J. Li, D. Jin, L. Zhou, and J. Cheng, Dielectric Properties of Barium Strontium Titanate (BST) Ceramics Synthesized by Using Mixed-Phase Powders Calcined at Varied Temperatures, Mater. Lett., 2012, 76, p 100–102

    Article  CAS  Google Scholar 

  20. S.O. Leontsev and R.E. Eitel, Progress in Engineering High Strain Lead-Free Piezoelectric Ceramics, Sci. Technol. Adv. Mater., 2010, 11, p 1–13

    Article  Google Scholar 

  21. A.M. Magerramov, Radiation Modification of Piezoelectric Properties of Piezoceramic Polymer Composites, Phys. Status Solidi. A, 1999, 174, p 551–556

    Article  CAS  Google Scholar 

  22. T.I. Aksenova, A.K. Berduletov, and D.K. Daukeev, Effect of Gamma Irradiation on Physical and Chemical Processes in YBaCuO, Radiat. Phys. Chem., 1995, 46, p 533–536

    Article  CAS  Google Scholar 

  23. I. Lefkowitz, Radiation-Induced Changes in the Ferroelectric Properties of Some Barium Titanate-Type Materials, J. Phys. Chem. Solids., 1959, 10, p 169–173

    Article  CAS  Google Scholar 

  24. M.C. Wittels and F.A. Sherrill, Fast Neutron Effects in Tetragonal Barium Titanate, J. Appl. Phys., 1957, 28, p 606–609

    Article  CAS  Google Scholar 

  25. G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1, p 22–31

    Article  CAS  Google Scholar 

  26. X. Dai, Z. Xu, and D. Viehland, Effect of Oxygen Octahedron Rotations on the Phase Stability, Transformational Characteristics and, Polarization Behavior in the Lead Zirconate Titanate Crystalline Solution Series, J. Am. Ceram. Soc., 1995, 78, p 2815–2827

    Article  CAS  Google Scholar 

  27. J. Ricote, R.W. Whatmore, and D.J. Barber, Studies of the Ferroelectric Domain Configuration and Polarization of Rhombohedral PZT Ceramics, J. Phys.: Condens. Matter., 2000, 12, p 323–337

    Article  CAS  Google Scholar 

  28. T.F. Hueter, D.P. Neuhaus, and J. Kolb, An Experimental Study of Polarization Effects in Barium Titanate Ceramics, J. Acoust. Soc. Am., 1954, 26, p 696–703

    Article  CAS  Google Scholar 

  29. K. Uchino, E. Sadanaga, and T. Hirose, Dependence of the Crystal Structure on Particle Size in Barium Titanate, J. Am. Ceram. Soc., 1989, 72, p 1555–1558

    Article  CAS  Google Scholar 

  30. N. Yasuda, H. Ohwa, and S. Asano, Dielectric Properties and Phase Transitions of Ba(Ti1−xSnx)O3 Solid Solution, Jpn. J. Appl. Phys., 1996, 35, p 5099–5103

    Article  CAS  Google Scholar 

  31. K. Uchino and S. Nomura, Critical Exponents of the Dielectric Constants in Diffuse-Phase-Transition Crystals, Ferroelectrics, 1982, 44, p 55–61

    Article  CAS  Google Scholar 

  32. A.Y. Fasasi, F.A. Balogun, M.K. Fasasi, P.O. Ogunleye, C.E. Mokobia, and E.P. Enyang, Thermoluminescence Properties of Barium Titanate Prepared by Solid-State Reaction, Sens. Actuators A, 2007, 135, p 598–604

    Article  CAS  Google Scholar 

  33. A. Stashans and H. Pinto, Analysis of Radiation-Induced Hole Localisation in Titanates, Radiat. Meas., 2001, 33, p 553–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, Solid State Physics Laboratory and AIIMS Research Section, Delhi, for providing facilities for some measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medhi, N., Nath, A.K. Gamma Ray Irradiation Effects on the Ferroelectric and Piezoelectric Properties of Barium Titanate Ceramics. J. of Materi Eng and Perform 22, 2716–2722 (2013). https://doi.org/10.1007/s11665-013-0569-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0569-0

Keywords

Navigation