Experimental Determination of Process Parameters and Material Data for Numerical Modeling of Induction Hardening

  • Maximilian SchwenkEmail author
  • Jürgen Hoffmeister
  • Volker Schulze


Induction surface hardening is a widely used manufacturing process to improve the mechanical properties of components. However, better process understanding as well as process development requires numerical modeling. The modeling itself depends on the input data in terms of process parameters and the material behavior. Data acquisition is a rather difficult task due to very short processing times, as seen in contour hardening of gears. The article will give an overview over critical aspects regarding the acquisition of input data. A short presentation of the numerical model used to compare experimental and numerical results shall promote better understanding for improving the modeling or reducing the model complexity necessary for good predictability.


data acquisition induction hardening numerical modeling 



The authors acknowledge the financial support by the German Research Foundation (DFG) within the framework of the graduate school 1483. Further, the authors would like to thank Dr. Martin Fisk and Dr. Tord Cedell for measuring the magnetic hysteresis curves at the Lund University as well as Katharina von Klinski-Wetzel for the specific heat capacity measurements.


  1. 1.
    D. Coupard, T. Palin-luc, P. Bristiel, V. Ji, and C. Dumas, Residual Stresses in Surface Induction Hardening of Steels: Comparison Between Experiment and Simulation, Mater. Sci. Eng., A, 2008, 487(1–2), p 328–339Google Scholar
  2. 2.
    F. Bay, V. Labbe, Y. Favennec, and J. Chenot, A Numerical Model for induction Heating Processes Coupling Electromagnetism and Thermomechanics, Int. J. Numer. Meth. Eng., 2003, 58(6), p 839–867CrossRefGoogle Scholar
  3. 3.
    D. Hömberg, A Mathematical Model for Induction Hardening Including Mechanical Effects, Nonlinear Anal. Real World Appl., 2004, 5(1), p 55–90CrossRefGoogle Scholar
  4. 4.
    M. Melander, Computer Calculations of Residual Stresses due to Induction Hardening, Eigenspannungen: Entstehung-Messung-Bewertung, E. Macherauch and V. Haug, Eds., Oberursel, 1983, p 309–328Google Scholar
  5. 5.
    M. Melander and J. Nicolov, Heating and Cooling Transformation Diagrams for the Rapid Heat Treatment of Two Alloy Steels, J. Heat Treat., 1985, 4(1), p 32–38CrossRefGoogle Scholar
  6. 6.
    M. Schwenk, M. Fisk, T. Cedell, J. Hoffmeister, V. Schulze, and L.-E. Lindgren, Process Simulation of Single and Dual Frequency Induction Surface Hardening Considering Magnetic Nonlinearity, Mater. Perform. Charact., 2012, 9(4), p 1–20Google Scholar
  7. 7.
    V. Rudnev, Handbook of Induction Heating, Marcel Dekker, New York, 2003Google Scholar
  8. 8.
    J. Rohde and A. Jeppsson, Literature Review of Heat Treatment Simulations with Respect to Phase Transformation, Residual Stresses and Distortion, Scand. J. Metall., 2000, 29(2), p 47–62CrossRefGoogle Scholar
  9. 9.
    S. Denis, Considering Stress-Phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses, J. Phys. IV, 1996, 06(C1), p 159–174Google Scholar
  10. 10.
    H. Surm, O. Kessler, F. Hoffmann, and H.-W. Zoch, Modelling of Austenitising with Non-Constant Heating Rate in Hypereutectoid Steels, Int. J. Microstruct. Mater. Prop., 2008, 3(1), p 35–48Google Scholar
  11. 11.
    G. Besserdich, B. Scholte, H. Mueller, and E. Macherauch, Consequences of Transformation Plasticity on the Development of Residual-Stresses and Distortion During Martensitic Hardening of SAE-4140 Steel Cylinders, Steel Res., 1994, 65(1), p 41–46Google Scholar
  12. 12.
    S. Hansson and M. Fisk, Simulations and Measurements of Combined Induction Heating and Extrusion Processes, Finite Elem. Anal. Des., 2010, 46(10), p 905–915CrossRefGoogle Scholar
  13. 13.
    C. Simsir and C.H. Gür, 3D FEM Simulation of Steel Quenching and Investigation of the Effect of Asymmetric Geometry on Residual Stress Distribution, J. Mater. Process. Technol., 2008, 207(1–3), p 211–221CrossRefGoogle Scholar
  14. 14.
    T. Miokovic, J. Schwarzer, V. Schulze, O. Vohringer, and D. Lohe, Description of Short Time Phase Transformations During the Heating of Steels Based on High-Rate Experimental Data, J. Phys. IV, 2004, 120, p 591–598Google Scholar
  15. 15.
    E.J. Dede, Medium and High-Frequency Power Systems for Industrial Induction, Proceedings of the International Symposium on Heating by Electromagnetic Sources, Vol 4, Padua, 2007, p 411–420Google Scholar
  16. 16.
    D.E. Stutz and S.L. Semiatin, Induction Heat Treatment of Steel, American Society for Metals, Metals Park, OH, 1986Google Scholar
  17. 17.
    B. Liscic, Heat Transfer Control During Quenching, Mater. Manuf. Process., 2009, 24(7), p 879–886CrossRefGoogle Scholar
  18. 18.
    E. Troell, H. Kristoffersen, M. Lövgren, and N.-E. Strand, Influence on Quenchant Performance During Induction Hardening, Heat Process., 2010, 8(4), p 329–334Google Scholar
  19. 19.
    A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori, A Comparative Study on Determination Method of Heat Transfer Coefficient Using Inverse Heat Transfer and Iterative Modification, J. Mater. Process. Technol., 2009, 209(10), p 4627–4632CrossRefGoogle Scholar
  20. 20.
    H.-J. Eckstein, Technologie der Wärmebehandlung von Stahl, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1987Google Scholar
  21. 21.
    H. Kawaguchi, M. Enokizono, and T. Todaka, Thermal and Magnetic Field Analysis of Induction Heating Problems, J. Mater. Process. Technol., 2005, 161(1–2), p 193–198CrossRefGoogle Scholar
  22. 22.
    R.S. Lakhkar, Y.C. Shin, and M.J.M. Krane, Predictive Modeling of Multi-Track Laser Hardening of AISI, 4140 Steel, Mater. Sci. Eng. A, 2008, 480(1–2), p 209–217Google Scholar
  23. 23.
    K.D. Maglić, Recommended Measurement Techniques and Practices, Plenum Press, New York, 1992Google Scholar
  24. 24.
    K. Obergfell, V. Schulze, and O. Vohringer, Layout of a New Thermo-Mechanical Test Device—Experiments in the Short-Time Range, Materialprüfung, 2002, 44(4), p 139–143Google Scholar
  25. 25.
    U. Ahrens, H.J. Maier, and A.E.M. Maksoud, Stress Affected Transformation in Low Alloy Steels—Factors Limiting Prediction of Plastic Strains, J. Phys. IV, 2004, 120, p 615–623Google Scholar
  26. 26.
    T. Miokovic, V. Schulze, O. Vöhringer, and D. Löhe, Prediction of Phase Transformations During Laser Surface Hardening of AISI, 4140 Including the Effects of Inhomogeneous Austenite Formation, Mater. Sci. Eng. A, 2006, 435–436, p 547–555Google Scholar
  27. 27.
    M.F. Ashby and K.E. Easterling, The Transformation Hardening of Steel Surfaces by Laser Beams—I. Hypo-Eutectoid Steels, Acta Metall., 1984, 32(11), p 1935–1948CrossRefGoogle Scholar
  28. 28.
    E. Macherauch and P. Müller, Das sin2-phi-Verfahren der röntgenographischen Spannungsmessung, Z. Angew. Phys., 1961, 13, p 340–345Google Scholar
  29. 29.
    P. Zwigl and D.C. Dunand, A Non-Linear Model for Internal Stress Superplasticity, Acta Metall. Mater., 1997, 45(12), p 5285–5294CrossRefGoogle Scholar
  30. 30.
    C. Simsir, M. Dalgiç, T. Lübben, A. Irretier, M. Wolff, and H.W. Zoch, The Bauschinger Effect in the Supercooled Austenite of SAE 52100 Steel, Acta Metall. Mater., 2010, 58(13), p 4478–4491CrossRefGoogle Scholar
  31. 31.
    J. Grum, Induction Hardening, Handbook of Residual Stress and Deformation, G. Totten, M. Howes, and T. Inoue, Ed., ASM International, Materials Park, OH, 2002, p 220–247 Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Maximilian Schwenk
    • 1
    Email author
  • Jürgen Hoffmeister
    • 1
  • Volker Schulze
    • 1
  1. 1.Institute for Applied Materials (IAM-WK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations