Skip to main content
Log in

Electric and Dielectric Properties of Cr-Ga Substituted BaM Hexaferrites for High-Frequency Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Single-phase Cr-Ga-substituted BaM hexaferrites with chemical formula BaCr x Ga x Fe12−2x O19 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) are synthesized by means of a sol-gel autocombustion technique. Cold isostatic-pressing technique has been used to press the as-prepared powders into pellets. Room-temperature DC resistivity enhances with the substitution of Cr-Ga contents. The temperature dependence of the DC resistivity shows the semiconducting nature. The dielectric constant and dielectric tangent loss decrease, while AC conductivity increases with the increasing applied field frequency in the range of 1 MHz-3 GHz consistent with Koop’s theory and Maxwell-Wagner’s bi-layer model. The magnetic loss enhances, while the reflection coefficient decreases with the increase of frequency as well as with the increase of Cr-Ga contents. Owing to improved properties, these materials are potential candidates for high-frequency applications in GHz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Li, G.G. Hu, H.D. Zhou, X.J. Fan, and X.G. Li, Attractive Microwave-Absorbing Properties of La1−x Sr x MnO3 Manganite Powders, Mater. Chem. Phys., 2002, 75(1–3), p 101–104

    Article  CAS  Google Scholar 

  2. K. Miura, M. Masuda, M. Itoh, T. Horikawa, and K. Machida, Microwave Absorption Properties of the Nano-Composite Powders Recovered from Nd-Fe-B Bonded Magnet Scraps, J. Alloys Compd., 2006, 408–412, p 1391–1395

    Article  Google Scholar 

  3. H.M. Xiao, X.M. Liu, and S.Y. Fu, Synthesis, Magnetic and Microwave Absorbing Properties of Core-Shell Structured MnFe2O4/TiO2 Nanocomposites, Compos. Sci. Technol., 2006, 66, p 2003

    Article  CAS  Google Scholar 

  4. A. Gonchar, S. Gorelik, S. Katynkina, L. Letyuk, and I. Ryabov, The Regularity of Microstructure Formation and Its Influence on the Properties of Soft Magnetic Ferrites, J. Magn. Magn. Mater., 2000, 215–216, p 221–223

    Article  Google Scholar 

  5. J. Huang, H. Zhuang, and W. Li, Synthesis and Characterization of Nanocrystalline BaFe12O19 Powders by Low Temperature Combustion, Mater. Res. Bull., 2003, 38(1), p 149–159

    Article  CAS  Google Scholar 

  6. L.L. Hench and J.K. West, Principles of Electronic Ceramics, Wiley, New York, 1990, p 305–309

    Google Scholar 

  7. H. Cho and S. Kim, M-Hexaferrites with Planar Magnetic Anisotropy and Their Application to High-Frequency Microwave Absorbers, IEEE Trans. Magn., 1999, 35(5), p 3151–3153

    Article  CAS  Google Scholar 

  8. I. Nedkov, A. Petkov, and A. Karpov, Microwave Absorption in Scand CoTi-Substituted Ba Hexaferrite Powders, IEEE Trans. Magn., 1990, 26(5), p 1483–1484

    Article  CAS  Google Scholar 

  9. M.R. Meshram, N.K. Agrawal, B. Shina, and P.S. Misra, Characterization of M-Type Barium Hexagonal Ferrite-Based Wide Band Microwave Absorb, J. Magn. Magn. Mater., 2004, 271(2–3), p 207–214

    Article  CAS  Google Scholar 

  10. S. Sugimoto, K. Haga, T. Kagotani, and K. Inomata, Microwave Absorption Properties of Ba M-Type Ferrite Prepared by a Modified Coprecipitation Method, J. Magn. Magn. Mater., 2005, 290–291(2), p 1188–1191

    Article  Google Scholar 

  11. I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad, Effects of Cr-Ga Substitution on the Structural and Magnetic Properties of Hexaferrite (BaFe12O19) Synthesized by Sol-Gel Auto-Combustion Route, J. Alloys Compd., 2013, 547, p 118–125

    Article  CAS  Google Scholar 

  12. K.M. Batoo, S. Kumar, C.G. Lee, and Alimuddin, Influence of Al Doping on Electrical Properties of Ni-Cd Nano Ferrites, Curr. Appl. Phys., 2009, 9, p 826–832

    Article  Google Scholar 

  13. G.F. Junior, H.O. Rodrigues, J.S. Almeida, E.O. Sancho, J.C. Góes, M.M. Costa, J.C. Denardin, and A.S.B. Sombra, Study of the Dielectric and Magnetic Properties of Co2Y, Y-Type Hexaferrite (Ba2Co2Fe12O22) Added with PbO and Bi2O3 in the RF Frequency Range, J. Alloy Compd., 2010, 493, p 326–334

    Article  Google Scholar 

  14. K.C. Kao, Dielectric Phenomena in Solids, Elsevier, Los Angeles, 2004, chap 2, p 51

  15. C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Phys. Rev., 1951, 83(1), p 121

    Article  CAS  Google Scholar 

  16. M.B. Reddy and P.V. Reddy, Cation Distribution of Li-Ti Mixed Ferrites, Appl. Phys. (UK), 1991, 24, p 975–981

    CAS  Google Scholar 

  17. S.C. Watawe, B.D. Sarwede, S.S. Bellad, B.D. Sutar, and B.K. Chougule, Microstructure, Frequency and Temperature-Dependent Dielectric Properties of Cobalt-Substituted Lithium Ferrites, J. Magn. Magn. Mater., 2000, 214, p 55–60

    Article  CAS  Google Scholar 

  18. S.S. Bellad and B.K. Chougule, Composition and Frequency Dependent Dielectric Properties of Li-Mg-Ti ferrites, Mater. Chem. Phys., 2000, 66, p 58

    Article  CAS  Google Scholar 

  19. N. Rezlescu and E. Rezlescu, Dielectric Properties of Copper Containing Ferrites, Phys. Status Solidi (a), 1974, 23, p 575

    Article  CAS  Google Scholar 

  20. A.K. Singh, T.C. Goel, and R.G. Mendiratta, Dielectric Properties of Mn-Substituted Ni- Zn Ferrites, J. Appl. Phys., 2002, 91(10), p 6626

    Article  CAS  Google Scholar 

  21. S. Ounnunkada and P. Winotai, Properties of Cr-Substituted M-Type Barium Ferrites Prepared by Nitrate-Citrate Gel-Autocombustion Process, J. Magn. Magn. Mater., 2006, 301, p 292–300

    Article  Google Scholar 

  22. I. Bsoula and S.H. Mahmood, Magnetic and Structural Properties of BaFe12−x Ga x O19 Nanoparticles, J. Appl. Phys., 2010, 489, p 110–114

    Google Scholar 

  23. L. Lechevallier, J.M. Le Breton, J.F. Wang, and I.R. Harris, Structural Analysis of Hydrothermally Synthesized Sr1−x Sm x Fe12O19 Hexagonal Ferrites, J. Magn. Magn. Mater., 2004, 269, p 192–196

    Article  CAS  Google Scholar 

  24. S.W. Lee, S.Y. An, I.B. Shim, and C.S. Kim, Mössbauer Studies of La-Zn Substitution Effect in Strontium Ferrite Nanoparticles, J. Magn. Magn. Mater., 2005, 290–291, p 231–233

    Article  Google Scholar 

  25. M.J. Iqbal, M.N. Ashiq, and I.H. Gul, Physical, Electrical and Dielectric Properties of Ca-Substituted Strontium Hexaferrite (SrFe12O19) Nanoparticles Synthesized by Co-precipitation Method, J. Magn. Magn. Mater., 2010, 322, p 1720–1726

    Article  CAS  Google Scholar 

  26. A.M. Abo El Ata, F.M. Reicha, and M.M. Ali, Transport and Magnetic Permeability Study of SrCu2−x/2Ti x Fe16−x O27 W-Type Hexaferrites, J. Magn. Magn. Mater., 2005, 292, p 17–24

    Article  CAS  Google Scholar 

  27. P.S. Sawadh and D.K. Kulkarni, Synthesis of Ferrite Grade c-Fe2O, Bull. Mater. Sci., 2001, 24(1), p 47–50

    Article  CAS  Google Scholar 

  28. L. Jia, J. Luo, H. Zhang, G. Xue, and Y. Jing, High-Frequency Properties of Si-Doped Z-Type Hexaferrites, J. Alloys Compd., 2010, 489, p 162–166

    Article  CAS  Google Scholar 

  29. M.P. Kumar, T. Sankarappa, B.V. Kumar, and N. Nagaraja, Dielectric Relaxation Studies in Transition Metal Ions Doped Tellurite Glasses, Solid State Sci., 2009, 11, p 214

    Article  Google Scholar 

  30. M.J. Iqbal and M.N. Ashiq, Physical and Electrical Properties of Zr-Cu Substituted Strontium Hexaferrite Nanoparticles Synthesized by Co-precipitation Method, Chem. Eng. J., 2008, 136, p 383–389

    Article  CAS  Google Scholar 

  31. M.M. Barakat, M.A. Henaish, S.A. Olofa, and A. Twafik, Sintering Behaviour of the Spinel Ferrite System Ni0.65Zn0.35Fe2−x Cu x O4, J. Therm. Anal., 1991, 37, p 241

    Article  CAS  Google Scholar 

  32. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Material, Clarendon press, Oxford, 1979

    Google Scholar 

  33. M.U. Islam, I. Ahmad, T. Abbas, M.A. Chaudhry, and R. Nazmeen, Proceedings of the 6th International Symposium, Islamabad, 1999, p. 155

  34. L. Sirdeshmukh, K.K. Kumar, S.B. Laxman, A.R. Krishna, and G. Sathaiah, Dielectric Properties and Electrical Conduction in Yttrium Iron Garnet (YIG), Bull. Mater. Sci., 1998, 21, p 219–226

    Article  CAS  Google Scholar 

  35. P.V. Ready and T.S. Rao, Dielectric Behaviour of Mixed Li-Ni Ferrites at Low Frequencies, J. Less. Common Met., 1982, 86, p 255–261

    Article  Google Scholar 

  36. M.J. Iqbal and S. Farooq, Enhancement of Electrical Resistivity of Sr0.5Ba0.5Fe12O19 Nanomaterials by Doping with Lanthanum and Nickel, Mater. Chem. Phys., 2009, 118, p 308–313

    Article  CAS  Google Scholar 

  37. K. Iwauchi, Dielectric Properties of Fine Particles of Fe3O4 and Some Ferrites, Jpn. J. Appl. Phys., 1971, 10, p 1520–1528

    Article  CAS  Google Scholar 

  38. H.P. Pinto and S.D. Elliott, Mechanism of the Verwey Transition in Magnetite: Jahn-Teller Distortion and Charge Ordering Patterns, J. Phys.: Condens. Matter., 2006, 18, p 10427–10436

    Article  CAS  Google Scholar 

  39. R.M. Almeida, W. Paraguassu, D.S. Pires, R.R. Corrêa, and C.W.A. de Paschoal, Impedance Spectroscopy Analysis of BaFe12O19, M-type Hexaferrite Obtained by Ceramic Method, Ceram. Int., 2009, 35, p 2443–2447

    Article  CAS  Google Scholar 

  40. A.S. Hudson, Ferrite Devices for Magnetron Protection in Microwave Power Systems, Marconi Rev., 1968, 37, p 43

    Google Scholar 

  41. I.H. Gul and A. Maqsood, Influence of Zn-Zr Ions on Physical and Magnetic Properties of Co-precipitated Cobalt Ferrite Nanoparticles, J. Magn. Magn. Mater., 2007, 316, p 13–18

    Article  CAS  Google Scholar 

  42. J. Zhu, K.J. Tseng, and C.F. Foo, Effects of Multi-Segment Structure on Core Losses in MnZn Ferrites at High Frequencies, IEEE Trans. Magn., 2000, 36, p 3408

    Article  CAS  Google Scholar 

  43. A. Kumar, B.P. Singh, R.N. Choudhary, P. Awalendra, and K. Thakur, Characterization of Electrical Properties of Pb-Modified BaSnO3 Using Impedance Spectroscopy, Mater. Chem. Phys., 2006, 99, p 150–159

    Article  CAS  Google Scholar 

  44. R.S. Devan, Y.R. Ma, and B.K. Chougule, Effective Dielectric and Magnetic Properties of (Ni-Co-Cu) Ferrite/BTO Composites, Mater. Chem. Phys., 2009, 115, p 263–268

    Article  CAS  Google Scholar 

  45. K.P. Padmasree, D.K. Kanchan, and A.R. Kulkarni, Impedance and Modulus Studies of the Solid Electrolyte System 20CdI2-80 [xAg2O-y(0.7V2O5-0.3B2O3)], where 1 ≤x/y ≤ 3, Solid State Ion., 2006, 177, p 475–482

    Article  CAS  Google Scholar 

  46. B.V.R. Chowdari and R.G. krishnnan, AC Conductivity Analysis of Glassy Silver Iodomolybdate System, Solid State Ion., 1987, 23, p 225–233

    Article  CAS  Google Scholar 

  47. E. Michielssen, J. Sajer, S. Ranjithan, and R. Mittra, Design of Lightweight, Broadband Microwave Absorbers Using Genetic Algorithms, Microw. Theory Tech., IEEE Trans., 1993, 41, p 1024–1031

    Article  CAS  Google Scholar 

  48. S. Sugimoto, S. Kondo, K. Okayama et al., M-Type Ferrite Composite as a Microwave Absorber with Wide Bandwidth in the GHz Range, IEEE Trans. Magn., 1999, 35(5), p 3154

    Article  CAS  Google Scholar 

  49. G. Mu, N. Chen, X. Pan, H. Shen, and M. Gu, Preparation and Microwave Absorption Properties of Barium Ferrite Nanorods, Mater. Lett., 2008, 62, p 840–842

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I., Islam, M.U., Awan, M.S. et al. Electric and Dielectric Properties of Cr-Ga Substituted BaM Hexaferrites for High-Frequency Applications. J. of Materi Eng and Perform 22, 2673–2680 (2013). https://doi.org/10.1007/s11665-013-0562-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0562-7

Keywords

Navigation