Skip to main content
Log in

Assessment of Multiaxial Mechanical Response of Rigid Polyurethane Foams

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Multiaxial deformation behavior and failure surface of rigid polyurethane foams were determined using standard experimental facilities. Two commercial foams of different densities were assayed under uniaxial, biaxial, and triaxial stress states. These different stress states were reached in a uniaxial universal testing machine using suitable testing configurations which imply the use of special grips and lateral restricted samples. Actual strains were monitored with a video extensometer. Polyurethane foams exhibited typical isotropic brittle behavior, except under compressive loads where the response turned out to be ductile. A general failure surface in the stress space which accounts for density effects could be successfully generated. All of failure data, determined at the loss of linear elasticity point, collapsed in a single locus defined as the combination of a brittle crushing of closed-cell cellular materials criterion capped by an elastic buckling criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Zhang and M.F. Ashby, Mechanical Selection of Foams and Honeycombs Used for Packaging and Energy Absorption, J. Mater. Sci., 1994, 29(1), p 157–163

    Article  Google Scholar 

  2. M. Avalle, G. Belingardi, and R. Montanini, Characterization of Polymeric Structural Foams Under Compressive Impact Loading by Means of Energy-Absorption Diagram, Int. J. Impact Eng., 2001, 25(5), p 455–472

    Article  Google Scholar 

  3. H. Zhao, G. Gary, and J.R. Klepaczko, On the Use of a Viscoelastic Split Hopkinson Pressure Bar, Int. J. Impact Eng., 1997, 19(4), p 319–330

    Article  Google Scholar 

  4. Polyurethane Handbook, 2nd ed., G. Oertel, Ed., Hanser, Munich, 1993

  5. T.C. Triantafillou, J. Zhang, T.L. Shercliff, L.J. Gibson, and M.F. Ashby, Failure Surfaces for Cellular Materials Under Multiaxial Loads-II. Comparison of Models with Experiment, Int. J. Mech. Sci., 1989, 31, p 665–678

    Article  Google Scholar 

  6. G. Menges and F. Knipschild, Estimation of Mechanical Properties for Rigid Polyurethane Foams, Polym. Eng. Sci., 1975, 15(8), p 623–627

    Article  Google Scholar 

  7. A.T. Huber and L.J. Gibson, Anisotropy of Foams, J. Mater. Sci., 1988, 23(8), p 3031–3040

    Article  Google Scholar 

  8. F. Saint-Michel, L. Chazeau, J.-Y. Cavaillé, and E. Chabert, Mechanical Properties of High Density Polyurethane Foams: I. Effect of the Density, Compos. Sci. Technol., 2006, 66(15), p 2700–2708

    Article  Google Scholar 

  9. L.J. Gibson, M.F. Ahsby, J. Zhang, and T.C. Triantafillou, Failure Surfaces for Cellular Materials Under Multiaxial Loads-I. Modelling, Int. J. Mech. Sci., 1989, 31(9), p 635–663

    Article  Google Scholar 

  10. M. Zaslawsky, Multiaxial-Stress Studies on Rigid Polyurethane Foam, Exp. Mech., 1973, 13(2), p 70–76

    Article  Google Scholar 

  11. P.S. Theocaris, The Influence of Porosity on the Failure Behaviour of Foams, Int. J. Damage Mech., 1998, 7(4), p 301–331

    Article  Google Scholar 

  12. D.-A. Wang and J. Pan, A Non-Quadratic Yield Function for Polymeric Foams, Int. J. Plast., 2006, 22(3), p 434–458

    Article  Google Scholar 

  13. Y. Kim and S. Kang, Development of Experimental Method To Characterize Pressure-Dependent Yield Criteria for Polymeric Foams, Polym. Test., 2003, 22(2), p 197–202

    Article  Google Scholar 

  14. R.E. Miller, A Continuum Plasticity Model for the Constitutive and Indentation Behaviour of Foamed Metals, Int. J. Mech. Sci., 2000, 42(4), p 729–754

    Article  Google Scholar 

  15. V.S. Deshpande and N.A. Fleck, Isotropic Constitutive Models for Metallic Foams, J. Mech. Phys. Solids, 2000, 48(6–7), p 1253–1283

    Article  Google Scholar 

  16. L.W. Hu and K.D. Pae, Inclusion of the Hydrostatic Stress Component in Formulation of the Yield Condition, J. Frankl. Inst., 1963, 275(6), p 491–502

    Article  Google Scholar 

  17. D. Ruan, G. Lu, L.S. Ong, and B. Wang, Triaxial Compression of Aluminium Foams, Compos. Sci. Technol., 2007, 67(6), p 1218–1234

    Article  Google Scholar 

  18. T.C. Triantafillou, J. Zhang, T.L. Shercliff, L.J. Gibson, and M.F. Ashby, Failure surface for Cellular Materials Under Multiaxial Loads II. Comparison of Models with Experiment, Int. J. Mech. Sci., 1989, 31(9), p 665–678

    Google Scholar 

  19. J. Zhang, N. Kikuchi, V. Li, A. Yee, and G. Nuscholtz, Constitutive Modeling of Polymeric Foam Material Subjected to Dynamic Crash Loading, Int. J. Impact Eng., 1998, 21(5), p 369–386

    Article  Google Scholar 

  20. V.L. Tagarielli, V.S. Deshpande, N.A. Fleck, and C. Chen, A Constitutive Model for Transversely Isotropic Foams, and Its Application to the Indentation of Balsa Wood, Int. J. Mech. Sci., 2005, 47(4-5), p 666–686

    Article  Google Scholar 

  21. D. Zenkert and M. Burman, Tension, Compression and Shear Fatigue of a Closed Cell Polymer Foam, Compos. Sci. Technol., 2009, 69(6), p 785–792

    Article  Google Scholar 

  22. E.E. Gdoutos, I.M. Daniel, and K.A. Wang, Failure of Cellular Foams Under Multiaxial Loading, Compos. A Appl. Sci. Manuf., 2002, 33(2), p 163–176

    Article  Google Scholar 

  23. G. Gioux, T.M. McCormack, and L.J. Gibson, Failure of Aluminum Foams Under Multiaxial Loads, Int. J. Mech. Sci., 2000, 42(6), p 1097–1117

    Article  Google Scholar 

  24. V.S. Deshpande and N.A. Fleck, Multi-Axial Yield Behaviour of Polymer Foams, Acta Mater., 2001, 49(10), p 1859–1866

    Article  Google Scholar 

  25. H. Jin, W.-Y. Lu, S. Scheffel, T. Hinnerichs, and M. Neilsen, Full-Field Characterization of Mechanical Behaviour of Polyurethane Foams, Int. J. Solids Struct., 2007, 44(21), p 6930–6944

    Article  Google Scholar 

  26. W. Gemin, V. Pettarin, L. Fasce, A. Tami, P. Frontini, Medición del comportamiento mecánico de materiales con técnicas de video (Assessment of Materials’ Mechanical Behavior with Video Techniques), R. Romero, A. Cuniberti Eds., PropMec’05, UNCPBA Ed., 2006, p 91–96 (in Spanish)

  27. C. G’Sell, S. Boni, and S. Shrivastava, Equivalent Strain in Large Deformation Torsion Testing: Theoretical and Practical Considerations, J. Mech. Phys. Solids, 1982, 30(1-2), p 75–90

    Article  Google Scholar 

  28. G.R. Canova, S. Shrivastava, J.J. Jonas, C. G’Sell, The Use of Torsion Testing to Assess Material Formability, Formability of Metallic Materials—2000 A.D., J.R. Newby, B.A. Niemer, Ed., American Society for Testing and Materials, Metals Park, Ohio, 1982, p 189

  29. J.C. Jaeger, Elasticity, Fracture and Flow, Chapman and Hall, London, 1969

    Google Scholar 

  30. C. G’Sell and A.J. Gopez, Plastic Banding in Glassy Polycarbonate Under Plane Simple Shear, J. Mater. Sci., 1985, 20(10), p 3462–3478

    Article  Google Scholar 

  31. L.J. Gibson and M.F. Ashby, Cellular Solids. Structure and Properties, Cambridge University Press, London, 1999

    Google Scholar 

  32. J.F. Rakow and A.M. Waas, Size Effects and the Shear Response of Aluminum Foam, Mech. Mater., 2005, 37(1), p 69–82

    Article  Google Scholar 

  33. J.F. Rakow and A.M. Waas, Size Effects in Metal Foam Cores for Sandwich Structures, Am. Inst. Aeronaut. Astronaut. J., 2004, 42(7), p 1331–1337

    Article  Google Scholar 

  34. Z.P. Bažant, Y. Zhou, G. Zi, and I.M. Daniel, Size Effect and Asymptotic Matching Analysis of Fracture of Closed-Cell Polymeric Foam, Int. J. Solids Struct., 2003, 40(25), p 7197–7217

    Article  Google Scholar 

  35. Z.P. Bažant, Y. Zhou, D. Novák, and I.M. Daniel, Size Effect in Fracture of Sandwich Structure Components: Foam and Laminate, Am. Soc. Mech. Eng. Appl. Mech. Div., 2001, 248, p 19–30

    Google Scholar 

  36. E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson, Size Efects in Ductile Cellular Solids. Part II: Experimental Results, Int. J. Mech. Sci., 2001, 43, p 701–713

    Article  Google Scholar 

  37. P.J. Phillips and N.R. Waterman, The Mechanical Properties of High-Density Rigid Polyurethane Foams in Compression: I. Modulus, Polym. Eng. Sci., 1974, 4(1), p 67–71

    Article  Google Scholar 

  38. D.W. Reitz, M.A. Schnetz, and L.R. Glicksman, A Basic Study of Aging of Foam Insulation, J. Cell. Plast., 1984, 20(2), p 104–113

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank CONICET and ANPCyT from Argentina for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Pettarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettarin, V., Fasce, L.A. & Frontini, P.M. Assessment of Multiaxial Mechanical Response of Rigid Polyurethane Foams. J. of Materi Eng and Perform 23, 477–485 (2014). https://doi.org/10.1007/s11665-013-0542-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0542-y

Keywords

Navigation