Skip to main content
Log in

Parametric Study of Metal/Polymer Multilayer Coatings for Temperature Wrinkling Prediction

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article presents an analytic model for the prediction of wrinkling occurring in metal/polymer coatings under particular conditions. Owing to different thermal expansion coefficients (TECs) of the substrate and the different coating layers, temperature variation can induce a compressive stress in the coating. The wrinkling is the material response to the instability caused by this compressive stress. In this study, a reference case was selected: a 0.27-mm-thick steel sheet with a 5-μm-thick polymer layer and, on top of it, a thin aluminum film of 50 nm in thickness. For this reference case, it was observed and predicted by the model that an increase in temperature yielded to the wrinkling of the thin aluminum film. The geometry of the multilayer coating and the properties of the constituent materials are factors able to promote or prevent the wrinkle. To better understand and predict their effects, a sensitivity analysis was carried out with the proposed analytic model. A special attention was devoted to the temperature when wrinkling occurs. The key parameters having a significant influence on the wrinkling temperature were identified. It is concluded that the elastic modulus of the thin aluminum film and that of the polymer, the TEC of the thin film, and the initial stress induced during the processing of the multilayer system all had a significant influence on the wrinkling temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Kim and H.H. Lee, Wave Formation by Heating in Thin Metal Film on an Elastomer, J. Polym. Sci. Pol. Phys., 2001, 39(11), p 1122–1128

    Article  CAS  Google Scholar 

  2. H.L. Zhang, T. Okayasu, and D.G. Bucknall, Large Area Ordered Lateral Patterns in Confined Polymer Thin Films, Eur. Polym. J., 2004, 40(5), p 981–986

    Article  Google Scholar 

  3. L. Zhang, A. Ben Bettaieb, A.M. Habraken, and L. Duchêne, Temperature Wrinkling Prediction in Metal/Polymer Multilayer Coatings, Int. J. Mater. Form., 2010, 3(Supplement 1), p 559–562

    Article  Google Scholar 

  4. H.G. Allen, Ed., Analysis and Design of Structural Sandwich Panels, Pergamon Press, New York, 1969

    Google Scholar 

  5. X. Chen and J.W. Hutchinson, Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates, J. Appl. Mech. ASME, 2004, 71(5), p 597–603

    Article  Google Scholar 

  6. R. Huang, Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate, J. Mech. Phys. Solids, 2005, 53(1), p 63–89

    Article  Google Scholar 

  7. P.J. Yoo and H.H. Lee, Morphological Diagram for Metal/Polymer Bilayer Wrinkling: Influence of Thermomechanical Properties of Polymer Layer, Macromolecules, 2005, 38(7), p 2820–2831

    Article  CAS  Google Scholar 

  8. B. Kolaric, H. Vandeparre, S. Desprez, R.A.L. Vallée, and P. Damman, In Situ Tuning the Optical Properties of a Cavity by Wrinkling, Appl. Phys. Lett., 2010, 96, p 043119

    Article  Google Scholar 

  9. A. Sabbah, H. Vandeparre, F. Brau, and P. Damman, Self-Cleaning Surfaces Prepared by Microstructuring System, Phys. Procedia, 2011, 21, p 193–197

    Article  Google Scholar 

  10. H. Vandeparre, J. Léopoldès, C. Poulard, S. Desprez, G. Derue, C. Gay, and P. Damman, Slippery or Sticky Boundary Conditions: Control of Wrinkling in Metal-Capped Thin Polymer Films by Selective Adhesion to Substrates, Phys. Rev. Lett., 2007, 99(18), p 188302

    Article  Google Scholar 

  11. H. Vandeparre, M. Pineirua, F. Brau, B. Roman, J. Bico, C. Gay, W. Bao, C.N. Lau, P. Reis, and P. Damman, Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains, Phys. Rev. Lett., 2011, 106, p 224301

    Article  Google Scholar 

  12. J. Groenewold, Wrinkling of Plates Coupled with Soft Elastic Media, Physica A, 2001, 298(1-2), p 32–45

    Article  Google Scholar 

  13. P.J. Yoo and H.H. Lee, Evolution of a Stress-Driven Pattern in Thin Bilayer Films: Spinodal Wrinkling, Phys. Rev. Lett., 2003, 91(15), p 154502

    Article  Google Scholar 

  14. R. Huang and Z. Suo, Instability of a Compressed Elastic Film on a Viscous Layer, Int. J. Solids Struct., 2002, 39(7), p 1791–1802

    Article  Google Scholar 

  15. N. Sridhar, D.J. Srolovitz, and Z. Suo, Kinetics of Buckling of a Compressed Film on a Viscous Substrate, Appl. Phys. Lett., 2001, 78(17), p 2482–2484

    Article  CAS  Google Scholar 

  16. P.J. Yoo, K.Y. Suh, H. Kang, and H.H. Lee, Polymer Elasticity-Driven Wrinkling and Coarsening in High Temperature Buckling of Metal-Capped Polymer Thin Films, Phys. Rev. Lett., 2004, 93(3), p 034301

    Article  Google Scholar 

  17. P.H. Townsend, D.M. Barnett, and T.A. Brunner, Elastic Relationships in Layered Composite Media with Approximation for the Case of Thin Films on a Thick Substrate, J. Appl. Phys., 1987, 62(11), p 4438–4444

    Article  Google Scholar 

  18. W. Timoshenko, Ed., Theory of Plates and Shells, McGraw Hill Higher Education, New York, 1987

    Google Scholar 

  19. S.K. Basu, A.M. Bergstreser, L.F. Francis, L.E. Scriven, and A.V. McCormick, Wrinkling of a Two-Layer Polymeric Coating, J. Appl. Phys., 2005, 98(6), p 063507

    Article  Google Scholar 

  20. J.W. Hutchinson, Mechanics of Thin Films and Multilayers (Course Notes), Technical University of Denmark, Lyngby, 1996

    Google Scholar 

  21. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C.V. Thompson, The Dynamic Competition Between Stress Generation and Relaxation Mechanisms During Coalescence of Volmer–Weber Thin Films, J. Appl. Phys., 2001, 89(9), p 4886–4897

    Article  CAS  Google Scholar 

  22. B.Z. Lee and D.N. Lee, Spontaneous Growth Mechanism of Tin Whiskers, Acta Mater., 1998, 46(10), p 3701–3714

    Article  CAS  Google Scholar 

  23. C. Massonnet and S. Cescotto, Ed., Mécanique des Matériaux (Materials Mechanic), De Boeck-Wesmael S.A, Bruxelles, 1994

    Google Scholar 

  24. K.E. Petersen, Silicon as a Mechanical Material, Proc. IEEE, 1982, 70(5), p 420–457

    Article  CAS  Google Scholar 

  25. S.C. Seel, C.V. Thompson, S.J. Hearne, and J.A. Floro, Tensile Stress Evolution During Deposition of Volmer–Weber Thin Films, J. Appl. Phys., 2000, 88(12), p 7079–7088

    Article  CAS  Google Scholar 

  26. M. Chinmulgund, R.B. Inturi, and J.A. Barnard, Effect of Ar Gas-Pressure on Growth, Structure, and Mechanical-Properties of Sputtered Ti, Al, TiAl, and Ti3Al Films, Thin Solid Films, 1995, 270(1-2), p 260–263

    Article  CAS  Google Scholar 

  27. J. Lintymer, N. Martin, J.M. Chappe, J. Takadoum, and P. Delobelle, Modeling of Young’s Modulus, Hardness and Stiffness of Chromium Zigzag Multilayers Sputter Deposited, Thin Solid Films, 2006, 503(1-2), p 177–189

    Article  CAS  Google Scholar 

  28. F. Cverna, Thermal Properties of Metals, ASM International, Materials Park, OH, 2002

    Google Scholar 

  29. Y. Zoo, D. Adams, J.W. Mayer, and T.L. Alford, Investigation of Coefficient of Thermal Expansion of Silver Thin Film on Different Substrates Using X-Ray Diffraction, Thin Solid Films, 2006, 513(1-2), p 170–174

    Article  CAS  Google Scholar 

  30. W. Tang, K. Xu, P. Wang, and X. Li, Residual Stress and Crystal Orientation in Magnetron Sputtering Au Films, Mater. Lett., 2003, 57(20), p 3101–3106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Walloon Region (Winnomat2 Dinosaure project). The Belgian Scientific Research Fund F.R.S. - FNRS which finances A.M.H., and the Belgian Sciences Policy (interuniversity attraction poles program IAP P7/21) are thanked for their financial support. The authors would also thank their industrial partner for this Winnomat2 project, namely AC&CS, subsidiary of CRM group (previously AMLR, subsidiary of ArcelorMittal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Duchêne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Habraken, A.M., Ben Bettaieb, A. et al. Parametric Study of Metal/Polymer Multilayer Coatings for Temperature Wrinkling Prediction. J. of Materi Eng and Perform 22, 2437–2445 (2013). https://doi.org/10.1007/s11665-013-0541-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0541-z

Keywords

Navigation