Skip to main content

Advertisement

Log in

Influence of Microstructural Inhomogeneity and Residual Stress on Very High Cycle Fatigue Property of Clean Spring Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigated the very high cycle fatigue (VHCF) properties of a spring steel SUP7-T386 under the conditions of surface grinding and electro-polishing by performing the axial loading test at a stress ratio of −1. The influence of the microstructural inhomogeneity (MI) generated in the process of heat treatment and the residual stress induced by surface grinding on the VHCF properties was discussed. This steel with surface grinding exhibits the continuously descending S-N characteristics, corresponding to the surface flaw-induced failure at high stress level and the interior flaw-induced failure at low stress level. Otherwise, with surface electro-polishing, it exhibits continuously descending S-N characteristics with lower fatigue strength, but only corresponding to the surface flaw-induced failure even at low stress level. Compared with the evaluated maximum inclusion size of about 11.5 μm, the larger MI size and the compressive residual stress play a key role in determining fatigue failure mechanism of this steel under axial loading in the VHCF regime. From the viewpoint of fracture mechanics, MI-induced crack growth behavior belongs to the category of small crack growth, and threshold stress intensity factors controlling surface and interior crack growth are evaluated to be 2.85 and 2.51 MPa m1/2, respectively. The predicted maximum MI size of about 27.6 μm can be well used to evaluate surface and interior fatigue limit of this steel under axial loading in the VHCF regime, combined with the correction of residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Naito, H. Ueda, and M. Kikuchui, Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure Near the Surface, Metall. Trans., 1984, 15A, p 1431–1436

    CAS  Google Scholar 

  2. K. Asami and Y. Sugiyama, Fatigue Strength of Various Surface Hardened Steels, J. Heat Treat. Technol. Assoc., 1985, 25, p 147–150

    Google Scholar 

  3. C. Bathias, There is No Infinite Fatigue Life in Metallic Materials, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 559–565

    Article  CAS  Google Scholar 

  4. B. Pyttel, D. Schwerdt, and C. Berger, Very High Cycle Fatigue—Is There a Fatigue Limit?, Int. J. Fatigue, 2011, 33, p 49–58

    Article  CAS  Google Scholar 

  5. T. Sakai, Y. Sato, and N. Oguma, Characteristic S-N Properties of High-Carbon-Chromium-Bearing Steel Under Axial Loading in Long-Life Fatigue, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 765–773

    Article  CAS  Google Scholar 

  6. S. Nishijima and K. Kanazawa, Step S-N Curve and Fish-Eye Failure in Gigacycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 601–607

    Article  CAS  Google Scholar 

  7. T. Sakai, M. Takeda, N. Tanaka, M. Kanemitsu, N. Oguma, and K. Shiozawa, S-N Property and Fractography of High Carbon Chromium Bearing Steel Over Ultra Wide Life Region Under Rotating Bending, Trans. Jpn. Soc. Mech. Eng., 2001, 67A, p 1805–1812

    Article  Google Scholar 

  8. K. Shiozawa, L.T. Lu, and S. Ishihara, S-N Curve Characteristics and Subsurface Crack Initiation Behavior in Ultra-Long Life Fatigue of a High Carbon-Chromium Bearing Steel, Fatigue Fract. Eng. Mater. Struct., 2001, 24, p 781–790

    Article  CAS  Google Scholar 

  9. Y. Murakami, T. Nomoto, and T. Ueda, Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 581–590

    Article  CAS  Google Scholar 

  10. Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida, High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 823–830

    Article  CAS  Google Scholar 

  11. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, and H. Danninger, Fratographic Evaluation of Gigacycle Fatigue Crack Nucleation and Propagation of a High Cr Alloyed Cold Work Tool Steel, Int. J. Fatigue, 2008, 30, p 2192–2199

    Google Scholar 

  12. R. Pippan, B. Tabernig, E. Gach, and F. Riemelmoser, Non-Propagation Conditions for Fatigue Cracks and Fatigue in the Very High-Cycle Regime, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 805–811

    Article  CAS  Google Scholar 

  13. K. Tanaka and Y. Akiniwa, Fatigue Crack Propagation Behavior Derived from S-N Data in Very High Cycle Regime, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 775–784

    Article  CAS  Google Scholar 

  14. Sakai T. Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structure Use, Proceedings of the 4th International Conference on Very High Cycle Fatigue, Michigan, 2007, p 3-12

  15. Y. Yu, J.L. Gu, B.Z. Bai, Y.B. Liu, and S.X. Li, Very High Cycle Fatigue Mechanism of Carbide-Free Bainite/Martensite Steel Micro-Alloyed with Nb, Mater. Sci. Eng. A, 2009, 527, p 212–217

    Article  Google Scholar 

  16. X.X. Xu, Y. Yu, W.L. Cui, B.Z. Bai, and J.L. Gu, Ultra-High Cycle Fatigue Behavior of High Strength Steel with Carbide-Free Bainite/Martensite Complex Microstructure, Int. J. Miner., Metal. Mater., 2009, 16, p 285–292

    Article  CAS  Google Scholar 

  17. E. Bayraktar, I. Marines-Garcia, and C. Bathias, Failure Mechanism of Automotive Metallic Alloys in Very High Cycle Fatigue Range, Int. J. Fatigue, 2006, 28, p 1590–1602

    Article  CAS  Google Scholar 

  18. Y.H. Nie, W.T. Fu, W.J. Hui, H. Dong, and Y.Q. Weng, Very High Cycle Fatigue Behavior of 2000 MPa Ultra-High-Strength Spring Steel with Bainite-Martensite Duplex Microstructure, Fatigue Fract. Eng. Mater. Struct., 2009, 32, p 189–196

    Article  CAS  Google Scholar 

  19. H. Itoga, K. Tokaji, M. Nakajima, and H.-N. Ko, Effect of Surface Roughness on Step-Wise S-N Characteristics in High Strength Steel, Int. J. Fatigue, 2003, 25, p 379–385

    Article  CAS  Google Scholar 

  20. K. Shiozawa and L. Lu, Very High-Cycle Fatigue Behavior of Shot-Peened High-Carbon-Chromium Bearing Steel, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 813–822

    Article  CAS  Google Scholar 

  21. T. Makino, The Effect of Inclusion Geometry According to Forging Ratio and Metal Flow Direction on Very High-Cycle Fatigue Properties of Steel Bars, Int. J. Fatigue, 2008, 30, p 1409–1418

    Article  CAS  Google Scholar 

  22. B. Pyttel, I. Brunner, D. Schwerdt, and C. Berger, Influence of Defects on Fatigue Strength and Failure Mechanisms in the VHCF-Region for Quenched and Tempered Steel and Nodular Cast Iron, Int. J. Fatigue, 2012, 41, p 107–118

    Article  CAS  Google Scholar 

  23. W. Li, T. Sakai, Q. Li, L.T. Lu, and P. Wang, Effect of Loading Type on Fatigue Properties of High Strength Bearing Steel In Very High Cycle Regime, Mater. Sci. Eng. A, 2011, 528, p 5044–5052

    Article  CAS  Google Scholar 

  24. A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, and Y.S. Hong, Effect of Strength Level and Loading Frequency on Very-High-Cycle Fatigue Behavior for a Bearing Steel, Int. J. Fatigue, 2012, 38, p 46–56

    Article  CAS  Google Scholar 

  25. M. Nakajima, K. Tokaji, H. Itoga, and H.-N. Ko, Morphology of Step-Wise S-N Curves Depending on Work-Hardened Layer and Humidity in a High Strength Steel, Fatigue Fract. Eng. Mater. Struct., 2003, 26, p 1113–1118

    Article  CAS  Google Scholar 

  26. ASTM E1290-08, “Standard Guide for Electrolytic Polishing of Metallographic Specimens,” West Conshohocken: American Society for Testing and Materials, 1999

  27. Y. Murakami, Metal Fatigue Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Amsterdam, 2002

    Google Scholar 

  28. Y. Murakami, S. Kodama, and S. Konuma, Quantitative Evaluation of Effect of Nonmetallic Inclusions on Fatigue Strength of High Strength Steel, Trans. Jpn. Soc. Mech. Eng., 1988, 54, p 688–695

    Article  CAS  Google Scholar 

  29. K. Shiozawa, M. Murai, Y. Shimatani, and T. Yoshimoto, Transition of Fatigue Failure Mode of Ni-Cr-Mo Low-Alloy Steel in Very High Cycle Regime, Int. J. Fatigue, 2010, 32, p 541–550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Sakai, T. & Wang, P. Influence of Microstructural Inhomogeneity and Residual Stress on Very High Cycle Fatigue Property of Clean Spring Steel. J. of Materi Eng and Perform 22, 2594–2601 (2013). https://doi.org/10.1007/s11665-013-0535-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0535-x

Keywords

Navigation