Advertisement

Heat Transfer Properties of a Series of Oxidized and Unoxidized Vegetable Oils in Comparison with Petroleum Oil-Based Quenchants

  • Ester Carvalho de Souza
  • Lauralice C. F. Canale
  • G. Sánchez Sarmiento
  • Eliana Agaliotis
  • Juan C. Carrara
  • Diego S. Schicchi
  • George E. Totten
Article

Abstract

Vegetable oils, especially soybean oil, exhibit substantially poorer thermal-oxidative stability than commercially available petroleum oil quenchant formulations. Therefore, to achieve any commercially interesting performance, vegetable oils must be stabilized by the addition of antioxidant inhibitors. This work describes the ability of two commercially available antioxidants, Irganox L 57 and Irganox L 109, to stabilize soybean oil against thermal-oxidative degradation. In addition, the effect of antioxidant stabilization on quenching performance was evaluated by determining the profile of heat transfer coefficient variation throughout the quenching process at different times after being subjected to an accelerated thermal-oxidation aging test. The results of this work are discussed here.

Keywords

antioxidants cooling curve analysis quenchants vegetable oils 

Notes

Acknowledgments

The authors acknowledge CAPES for the financial support and MSc Renata Leal for physical chemistry analysis.

References

  1. 1.
    J.L. Burns and V. Brown, The How and Why of Time Quenching, Am. Mach., 1940, 84(15), p 523–526Google Scholar
  2. 2.
    M.S.P. Murthy, B.R. Ghosh, P.P. Sinha, M.C. Mittal, and B.K. Sarkar, Studies on the Effects of Quenching Media and Quench Delays on the Properties of 12 mm Thick 15CDV6 Steel Plates, Trans. Indian Inst. Metals, 1982, 35(1), p 33–42Google Scholar
  3. 3.
    C.W. Finkl and N. Cerwin, Method of Controlled Fluid Quenching of Steel, U.S. Patent 5,180,444, 19 Jan 1993Google Scholar
  4. 4.
    N.I. Kobasko, M.A. Aronov, J.A. Powell, L.C.F. Canale, and G.E. Totten, Intensive Quenching Process Classification and Applications, Heat Treat. Metals, 2004, 31(3), p 51–58Google Scholar
  5. 5.
    H. Yu, J.A. Nicol, R.A. Ramser and D.E. Hunter, Method of Heat Treating Metal with a Liquid Coolant Containing Dissolved Gas, US Patent 5,681,407, 28 Oct 1997Google Scholar
  6. 6.
    G.E. Totten, Polymer Quenchants: The Basics, Adv. Mat. Proc., 1990, 137(3), p 51–53Google Scholar
  7. 7.
    G.E. Totten, G.M. Webster, S.W. Han and S.H. Kang, Immersion Time Quenching Technology to Facilitate Replacement of Quench Oils with Polymer Quenchants for Production of Automotive Parts, The 1st International Automotive Heat Treating Conference, R. Colas, K. Funatani and C.A. Stickels, Ed., (Materials Park, OH), ASM International, 1998, p 449–455Google Scholar
  8. 8.
    J. Pritchard and S. Rush, Vacuum Hardening of High-Strength Steels: Oil Versus Gas Quenching, Heat Treat. Progr., 2007, May/June, p 19–23Google Scholar
  9. 9.
    S. Serhan, “The Use of Vegetable Oils in Bio-Based Products”, Presentation available from National Center for Agricultural Utilization Research, USDA/ARS, 1815 N. University St., Peoria, IL, USAGoogle Scholar
  10. 10.
    Anonymous, “Corn Oil”, Brochure Published by Corn Refiners Association, 1701 Pennsylvania Ave. N.W., Washington, DC., 20006-5805 (www.corn.org)
  11. 11.
    M. Tagaya and I. Tamura, “Studies on the Quenching Media 3rd Report. The Cooling Ability of Oils,” Technology Report, Osaka University, Vol 4, 1954, p 305–319Google Scholar
  12. 12.
    Y. Fujimura and T. Sato, The Composition of Quenching Oil and Quenching Effects, Iron Steel Inst. Jpn., 1963, 49, p 1008–1015Google Scholar
  13. 13.
    R.J. Brennan, and C.H. Faulkner, A New Quenching Alternative, Conf. Proceed. 2nd International Conference on Quenching and Control of Distortion, G.E. Totten, K. Funatani, M.A.H. Howes, S. Sjostrom, Eds., (Materials Park, OH), ASM International, 1996, p 423–428Google Scholar
  14. 14.
    L.A.T. Honary, Performance of Vegetable Oils as a Heat Treat Quenchant, Conf. Proceed. 2nd International Conference on Quenching and Control of Distortion, G.E. Totten, K. Funatani, M.A.H. Howes, S. Sjostrom, Eds., (Materials Park, OH), ASM International, 1996, p 595–605Google Scholar
  15. 15.
    ISO 9950-1995, “Industrial quenching oils—determination of cooling characteristics—nickel-alloy probe test method”Google Scholar
  16. 16.
    ASTM D6200-07 “Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis”, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428 USAGoogle Scholar
  17. 17.
    W. Castro, J.M. Perez, S.Z. Erhan, and F. Caputo, A Study of the Oxidation and Wear Properties of Vegetable Oils: Soybean Oil Without Additives, J. Am. Oil Chem. Soc., 2006, 83(1), p 47–52CrossRefGoogle Scholar
  18. 18.
    S. Knowlton, Soybean Oil Having High Oxidative Stability, U.S. Patent 5,981,781, 9 Nov 1999Google Scholar
  19. 19.
    E.B. Cahoon, Genetic Enhancement of Soybean Oil for Industrial Uses: Prospects and Challenges, AgBioForum, 2003, 6(1&2), p 11–13Google Scholar
  20. 20.
    C. Tompkins and E.G. Perkins, Frying Performance of Low-Linolenic Acid Soybean Oil, J. Am. Oil Chem. Soc., 2000, 77(3), p 223–229CrossRefGoogle Scholar
  21. 21.
    L.A.T. Honary, Soybean Based Hydraulic Fluid, U.S. Patent 5,972,855, 26 Oct 1999Google Scholar
  22. 22.
    G.E. Totten, H.M. Tensi, and K. Lanier, Performance of Vegetable Oils as a Cooling Medium in Comparison to a Standard Mineral Oil, J. Mat. Eng. Perf., 1999, 8(4), p 409–416CrossRefGoogle Scholar
  23. 23.
    K.N. Prabhu and P. Fernandes, Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants, Metall. Mater. Trans. B, 2007, 38(4), p 631–640CrossRefGoogle Scholar
  24. 24.
    P. Fernandes and K.N. Prabhu, Comparative Study of Heat Transfer and Wetting Behaviour of Conventional and Bioquenchants for Industrial Heat Treatment, Int. J. Heat Mass Transf., 2008, 51(3-4), p 526–538CrossRefGoogle Scholar
  25. 25.
    M. Tagaya and I. Tamura, “On the Deterioration of Quenching Oils,” Technology Report, Osaka University, Vol 7, 1957, p 403–424Google Scholar
  26. 26.
    L.C.F. Canale, M.R. Fernandes, S.C.M. Agustinho, G.E. Totten, and A.F. Farah, Oxidation of Vegetable Oils and Its Impact on Quenching Performance, Int. J. Mater. Prod. Technol., 2005, 24(1-4), p 101–125CrossRefGoogle Scholar
  27. 27.
    T. Kinami, N. Horii, B. Narayan, S. Arato, M. Hosokawa, K. Miyashita, H. Negishi, J. Ikuina, R. Noda, and S. Shirasawa, Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil, J. Am. Oil Chem. Soc., 2007, 84(1), p 23–29CrossRefGoogle Scholar
  28. 28.
    ABNT NBR 10441—10/02. Produtos de petróleo—Líquidos transparentes e opacos—Determinação da viscosidade cinemática e cálculo da viscosidade dinâmicaGoogle Scholar
  29. 29.
    A. Bashford and A.J. Mills, The Development of Improved Additives for Quenching Oils using Laboratory Simulations, Heat Treat. Metals, 1984, 11(1), p 9–14Google Scholar
  30. 30.
    A.F. Farah, Caracterização de óleos vegetais como alternativa para meios de resfriamento utilizados no tratamento térmico de têmpera. Dissertação (Doutorado)—Interunidades em Ciência e Engenharia de Materiais, Universidade de São Paulo, São Carlos, 2002Google Scholar
  31. 31.
    G.G. Lamb, C.M. Loane, and J.W. Gaynor, Indiana Stirring Oxidation Test for Lubricating Oils, Ind. Eng. Chem. Anal. Ed., 1941, 13(5), p 317–321CrossRefGoogle Scholar
  32. 32.
    G. S. Sarmiento, A. Gastón, and J. Vega, Inverse Heat Conduction Coupled with Phase Transformation Problems in Heat Treating Process, Computational Mechanics—New Trends and Applications, E. Oñate, S.R. Idelsohn, Eds., CIMNE, Barcelona, 1998, CD Book. Part VI, Section 1, Paper 16Google Scholar
  33. 33.
    J. Clark, and R. Tye, Thermophysical Properties Reference Data for Some Key Engineering Alloys, High Temp. High Press., 2003/2004, 35/36, p 1–14Google Scholar
  34. 34.
    S. Blaine and P.E. Savage, Reaction Pathways in Lubricant Degradation. 2. N-Hexadecane Autoxidation, Eng. Chem. Res., 1991, 30, p 218502191Google Scholar
  35. 35.
    I. Debruyne, Soybean Oil Processing: Quality Criteria and Flavor Reversion, Oil Mill Gaz., 2004, 110, p 10–11Google Scholar
  36. 36.
    I. Paz and M. Molero, Catalytic Effect of Solid Metals on Thermal Stability of Olive Oils, J. Am. Oil Chem. Soc., 2000, 77(2), p 127–130CrossRefGoogle Scholar
  37. 37.
    W.F. Bowman and G.W. Stochowiak, Application of Sealed Capsule Differential Scanning Calorimetry—Part II: Assessing the Performance of Antioxidants in Base Oils, Lubr. Eng., 1999, 55(5), p 22–29Google Scholar
  38. 38.
    D. Komatsu, E.C. Souza, E. Carvalho de Souza, L.F.C. Canale, G.E. Totten, Effect of Antioxidants and Corrosion Inhibitor Additives on the Quenching Performance of SoybeanOil, Strojniški vestnik (J. Mech. Eng. Slovenia), 2010, 56(2), p 121–130Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Ester Carvalho de Souza
    • 1
  • Lauralice C. F. Canale
    • 1
  • G. Sánchez Sarmiento
    • 2
    • 3
  • Eliana Agaliotis
    • 4
  • Juan C. Carrara
    • 5
    • 6
  • Diego S. Schicchi
    • 5
    • 6
  • George E. Totten
    • 7
  1. 1.Universidade de São Paulo, Escola de Engenharia de São CarloSão CarlosBrazil
  2. 2.Facultad de Ciencia y TecnologíaUniversidad del SalvadorBuenos AiresArgentina
  3. 3.Facultad de Ciencia y TecnologíaUniversidad AustralBuenos AiresArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  5. 5.Instituto Nacional de Tecnología Industrial, PTMBuenos AiresArgentina
  6. 6.Facultad Regional Buenos AiresUniversidad Tecnológica NacionalBuenos AiresArgentina
  7. 7.Department of Mechanical and Materials EngineeringTexas A&M UniversitySeattleUSA

Personalised recommendations