Skip to main content
Log in

Grain Size Control of the Magnetic Nanoparticles by Solid State Route Modification

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The CoFe2O4 and NiFe2O4 nanoparticles were synthesized exploiting a co-precipitation method and afterward calcinated at 400 °C through two different experimental apparatus: a conventional muffle and rotatory oven. X-ray diffraction (XRD) analysis revealed that nanocrystalline ferrites grew with a face center cubic structure (fcc) and Fd3m symmetry space group. XRD, transmission electron microscopy, and magnetic measurements confirmed the compositional homogeneity and the narrow size particle distribution (6-8 nm) of the sample thermally treated in a rotary oven, in all likelihood due to the sample’s constant turning movement. The size of the magnetic particles is extremely important and influences the choice of a potential technological application. For this reason, our study emerges as a new and simple innovating procedure to control the size of magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Bem Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.J. Vaulay, V. Richard, J.M. Grenèche, F. Villain, and F. Fiévet, Magnetic Properties of CoFe1.9RE0.1O4 Nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) Prepared in Polyol, J. Magn. Magn. Mater., 2008, 320, p 3242–3250

    Article  Google Scholar 

  2. J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R. Banerjee, and D. Bahadur, Synthesis and Characterizations of Water-Based Ferrofluids of Substituted Ferrites [Fe1−xBxFe2O4, B = Mn, Co (x = 0-1)] for Biomedical Applications, J. Magn. Magn. Mater., 2008, 320, p 724–730

    Article  CAS  Google Scholar 

  3. V.I. Shubayev, T.R. Pisanic, II, and S. Jin, Magnetic Nanoparticles for Theragnostics, Adv. Drug Deliv. Rev., 2009, 61, p 467–477

    Article  CAS  Google Scholar 

  4. E.H. Kim, H.S. Lee, B.K. Kwak, and B.K. Kim, Synthesis of Ferrofluid with Magnetic Nanoparticles by Sonochemical Method for MRI, Contrast Agent, J. Magn. Magn. Mater., 2005, 289, p 328–330

    Article  CAS  Google Scholar 

  5. P. Laokul, V. Amornkitbamrung, S. Seraphin, and S. Maensiri, Characterization and Magnetic Properties of Nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 Powders Prepared by the Aloe Vera Extract Solution, Curr. Appl. Phys., 2011, 11, p 101–108

    Article  Google Scholar 

  6. L.J. Cote, A.S. Teja, A.P. Wilkinson, and Z.J. Zhang, Continuous Hydrothermal Synthesis of CoFe2O4 Nanoparticles, Fluid Phase Equilib., 2003, 210, p 307–317

    Article  CAS  Google Scholar 

  7. S.B. Waje, M. Hashim, W.D.W. Yusoff, and Z. Abbas, X-Ray Diffraction Studies on Crystallite of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering, Appl. Surf. Sci., 2010, 256, p 3122–3127

    Article  CAS  Google Scholar 

  8. Y. Shi, J. Ding, and L.J. Wang, NiFe2O4 Ultrafine Particles Prepared by Co-Precipitation/Mechanical Alloying, J. Magn. Magn. Mater., 1999, 205, p 249–254

    Article  CAS  Google Scholar 

  9. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, and I. Nakatani, Mixed Spinel Structure in Nanocrystalline NiFe2O4, Phys. Rev. B, 2001, 63, p 184108

    Article  Google Scholar 

  10. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zuo, Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification, Sep. Purif. Technol., 2009, 68, p 312–319

    Article  CAS  Google Scholar 

  11. S. Neveu, A. Bee, M. Robineau, and D. Talbot, Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid, J. Colloid Interface Sci., 2002, 255, p 293–298

    Article  CAS  Google Scholar 

  12. C. Boyer, M.R. Whittaker, V. Bulmus, J. Liu, and T.P. Davis, The Design and Utility of Polymer-Stabilized Iron-Oxide Nanoparticles for Nanomedicine Applications, NPG Asia Mater., 2010, 2, p 23–30

    Article  Google Scholar 

  13. A.O.G. Maia, C.T. Meneses, A.S. Menezes, W.H. Flores, D.M.A. Melo, and J.M. Sasaki, Synthesis and X-Ray Structural Characterization of NiO Nanoparticles Obtained Through Gelatin, J. Non-Cryst. Solids, 2006, 352, p 3729–3733

    Article  CAS  Google Scholar 

  14. H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr., 1967, 22, p 151–152

    Article  CAS  Google Scholar 

  15. R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, DBWS-9411: An Upgrade of the DBWS Programs for Rietveld Refinement with PC and Mainframe Computers, J. Appl. Crystallogr., 1995, 28, p 366–367

    Article  Google Scholar 

  16. G. Caglioti, A. Paoletti, and F.P. Ricci, Choice of Collimator for a Crystal Spectrometer for Neutron Diffraction, Nucl. Instrum. Methods, 1958, 35, p 223–228

    Google Scholar 

  17. G.K. Williamsom and W.H. Hall, X-Ray Line Broadening from Filed Aluminum and Wolfram, Acta Metall., 1953, 1, p 22

    Article  Google Scholar 

  18. L.J. Zhao and Q. Jiang, Effects of Applied Magnetic Field and Pressures on the Magnetic Properties of Nanocrystalline CoFe2O4 Ferrite, J. Magn. Magn. Mater., 2010, 322, p 2485–2487

    Article  CAS  Google Scholar 

  19. D.L. Zhao, X.W. Zeng, Q.S. Xia, and J.T. Tang, Preparation and Coercivity and Saturation Magnetization Dependence of Inductive Heating Property of Fe3O4 Nanoparticles in an Alternating Current Magnetic Field for Localized Hyperthermia, J. Alloy. Compd., 2009, 469, p 215–218

    Article  CAS  Google Scholar 

  20. B.P. Rao, G.S.N. Rao, A.M. Kumar, K.H. Rao, Y.L.N. Murthy, S.M. Hong, C.-O. Kim, and C. Kim, Soft Chemical Synthesis and Characterization of Ni0.65Zn0.35Fe2O4 Nanoparticles, J. Appl. Phys., 2007, 101, p 123902-1–123902-4

    Google Scholar 

  21. Z. Wang, B. Shen, Z. Aihua, and N. He, Synthesis of Pd/Fe3O4 Nanoparticle-Based Catalyst for the Cross-Coupling of Acrylic Acid with Iodobenzene, Chem. Eng. J., 2005, 113, p 27–34

    Article  Google Scholar 

  22. A.C.H. Barreto, V.R. Santiago, S.E. Mazzetto, J.C. Denardin, R. Lavín, G. Mele, M.E.N.P. Ribeiro, I.G.P. Vieira, T. Gonçalves, N.M.P.S. Ricardo, and P.B.A. Fechine, Magnetic Nanoparticles for a New Drug Delivery System to Control Quercetin Releasing for Cancer Chemotherapy, J. Nanopart. Res., 2011, 13, p 6545–6553

    Article  CAS  Google Scholar 

  23. A.C.H. Barreto, F.J.N. Maia, V.R. Santiago, V.G.P. Ribeiro, J.C. Denardin, G. Mele, L. Carbone, D. Lomonaco, S.E. Mazzetto, and P.B.A. Fechine, Novel Ferrofluids Coated with a Renewable Material Obtained from Cashew Nut Shell Liquid, Microfluid. Nanofluid., 2012, 12, p 677–686

    Article  CAS  Google Scholar 

  24. Y.I. Kim, D. Kim, and C.S. Lee, Synthesis and Characterization of CoFe2O4 Magnetic Nanoparticles Prepared by Temperature-Controlled Coprecipitation Method, Phys. B, 2003, 337, p 42–51

    Article  CAS  Google Scholar 

  25. A. Ahlawat, V.G. Sathe, V.R. Reddy, and A. Gupta, Mossbauer, Raman and X-Ray Diffraction Studies of Superparamagnetic NiFe2O4 Nanoparticles Prepared by Sol-Gel Auto-Combustion Method, J. Magn. Magn. Mater., 2011, 323, p 2049–2054

    Article  CAS  Google Scholar 

  26. S. Krehula and S. Musić, Influence of Cobalt Ions on the Precipitation of Goethite in Highly Alkaline Media, Clay Miner., 2008, 43, p 95–105

    Article  CAS  Google Scholar 

  27. D.P.E. Dickson and F.J. Berry, Mössbauer Spectroscopy, Cambridge University Press, Cambridge, MA, 1986

    Book  Google Scholar 

  28. A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, and A.I.C. Persiano, Structure and Magnetic Properties of Nanostructured Ni-Ferrite, J. Magn. Magn. Mater., 2001, 226–230, p 1379–1381

    Article  Google Scholar 

  29. D.R. Patil and B.K. Chougule, Effect of Copper Substitution on Electrical and Magnetic Properties of NiFe2O4 Ferrite, Mater. Chem. Phys., 2009, 117(2009), p 35–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support from CAPES, Funcap, and CNPq (Brazilian agencies); Fondecyt 1110252; Millennium Science Nucleus, Basic and Applied Magnetism Grant No. P10-061-F; and CONICYT BASAL CEDENNA FB0807 (Chilean agencies) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. A. Fechine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreto, A.C.H., Santiago, V.R., Freire, R.M. et al. Grain Size Control of the Magnetic Nanoparticles by Solid State Route Modification. J. of Materi Eng and Perform 22, 2073–2079 (2013). https://doi.org/10.1007/s11665-013-0480-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0480-8

Keywords

Navigation