Skip to main content
Log in

Effect of Annealing Temperature in Al 1145 Alloy Sheets on Formability, Void Coalescence, and Texture Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper deals with a combined forming and fracture limit diagram and void coalescence analysis for the aluminum alloy Al 1145 alloy sheets of 1.8 mm thickness, annealed at four different temperatures, namely 200, 250, 300, and 350 °C. At different annealing temperatures these sheets were examined for their effects on microstructure, tensile properties, formability, void coalescence, and texture. Scanning electron microscope (SEM) images taken from the fractured surfaces were examined. The tensile properties and formability of sheet metals were correlated with fractography features and void analysis. The variation of formability parameters, normal anisotropy of sheet metals, and void coalescence parameters were compared with texture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

σ:

True stress

ε:

True strain

ε1 :

True major strain

ε2 :

True minor strain

ε3 :

True thickness strain

εe :

True effective strain

εm :

True hydrostatic or mean strain

R-ratio:

Plastic strain ratio (ratio of width to thickness strain)

n :

Strain hardening index or exponent value

K :

Strength coefficient value

R av :

Average plastic strain ratio or normal anisotropy = (R 0 + R 90 + 2R 45)/4

ΔR :

Planar anisotropy

n av :

Average strain hardening index = (n 0 + n 90 + 2n 45)/4

K av :

Average strength coefficient = (K 0 + K 90 + 2K 45)/4

RD:

Rolling direction

ND:

Normal direction

TT:

Strain condition of tension-tension region

PS:

Plane strain condition

TC:

Strain condition of tension-compression region

V a :

Void area fraction

L/W :

Length to width ratio of void

T :

Triaxiality factor

γ12 :

Mohr’s circle Shear strain developed because of ε1 and ε2 ((ε1 − ε2)/2)

γ23 :

Mohr’s circle Shear strain developed because of ε2 and ε3 ((ε2 − ε3)/2)

γ13 :

Mohr’s circle Shear strain developed because of ε1 and ε3 ((ε1 − ε3)/2)

δd :

Relative spacing of the ligaments between two consecutive voids

d-Factor:

A parameter on the void analysis (ratio of the δd to the radius of the void)

ODF:

Orientation distribution function

SEM:

Scanning electron microscopy

RMA:

Representative material area (i.e., the area chosen in the SEM image)

References

  1. Z.P. Xing, S.B. Kang, and H.W. Kim, Softening Behavior of 8011 Alloy Produced by Accumulative Roll Bonding Process, Scripta Mater., 2001, 45, p 597–604

    Article  CAS  Google Scholar 

  2. H. Takuda, N. Yamazaki, N. Hatta, and S. Kikuchi, Influence of Cold-Rolling and Annealing Conditions on Formability of Aluminium Alloy Sheet, J. Mater. Sci., 1995, 30, p 957–963

    Article  CAS  Google Scholar 

  3. D. Ravi Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252

    Google Scholar 

  4. E. Batraktar, N. Isac, and G. Arnold, An Experimental Study on the Forming Parameters of Deep-Drawable Steel Sheets in Automotive Industry, J. Mater. Process. Technol., 2005, 162–163, p 471–476

    Article  Google Scholar 

  5. V. Karthik, R.J. Comstock, Jr., D.L. Hershberger, and R.H. Wagoner, Variability of Sheet Formability and Formability Testing, J. Mater. Process. Technol., 2002, 121, p 350–362

    Article  CAS  Google Scholar 

  6. H.B. Campos, M.C. Butuc, J.J. Gracio, J.E. Rocha, and J.M.F. Duarte, Theoretical and Experimental Determination of the Forming Limit Diagram for the AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60

    Article  CAS  Google Scholar 

  7. M. Aghaie-Khafri, Formability of AA8011 Aluminum Alloy Sheet in Homogenized and Unhomogenized Conditions, J. Mater. Sci., 2004, 39, p 6467–6472

    Article  CAS  Google Scholar 

  8. Y.-M. Huang, Y.-W. Tsai, and C.-L. Li, Analysis of Forming Limits in Metal Forming Processes, J. Mater. Process. Technol., 2008, 201, p 385–389

    Article  CAS  Google Scholar 

  9. O. Kristensson, Numerically Produced Forming Limit Diagrams for Metal Sheets with Voids Considering Micromechanical Effects, Eur. J. Mech. A, 2006, 25, p 13–23

    Article  Google Scholar 

  10. F. Ozturk and D. Lee, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., 2004, 147, p 397–404

    Article  Google Scholar 

  11. Z. Yu, Z. Lin, and Y. Zhao, Evaluation of Fracture Limit in Automotive Aluminium Alloy Sheet Forming, Mater. Des., 2007, 28, p 203–207

    Article  CAS  Google Scholar 

  12. V. Tvergaard, Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, Int. J. Fract., 1981, 17, p 389–407

    Article  Google Scholar 

  13. A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture Modes at a Crack Tip, J. Mech. Phys. Solids, 1987, 35, p 151–183

    Article  Google Scholar 

  14. M. Gologanu, J.B. Leblond, and J. Devaux, Recent Extensions of Gurson’s Models for Porous Ductile Metals, Continuum Micromechanics, P. Suquet, Ed., Springer-Verlag, Berlin, 1995,

    Google Scholar 

  15. A.A. Benzerga, J. Bessson, and A. Pianeau, Coalescence-Controlled Anisotropic Ductile Fracture, J. Eng. Mater. Technol., 1999, 121, p 221–229

    Article  CAS  Google Scholar 

  16. X. Gao and J. Kim, Modelling of Ductile Fracture: Significance of Void Coalescence, Int. J. Solids Struct., 2006, 43, p 6277–6293

    Article  Google Scholar 

  17. R. Narayanasamy and C. Sathiya Narayanan, Experimental Analysis and Evaluation of Forming Limit Diagram for Interstitial Free Steels, Mater. Des., 2007, 28(5), p 1490–1512

    Article  CAS  Google Scholar 

  18. J. Kim, X. Gao, and T.S. Srivatsan, Modelling of Crack Growth in Ductile Solids: A Three-Dimensional Analysis, Int. J. Solids Struct., 2003, 40, p 7357–7374

    Article  Google Scholar 

  19. H.-S. Son, Y.-S. Kim, K.-H. Na, and S.-M. Hwang, Effect of Void Shape and Its Growth on Forming Limits for Anisotropic Sheets Containing Non-spherical Voids, ASME Int. J. A, 2004, 47, p 512–520

    Google Scholar 

  20. A.R. Ragab, Prediction of Fracture Limit Curves in Sheet Metals Uses a Void Growth and Coalescence Model, J. Mater. Process. Technol., 2008, 199, p 206–213

    Article  CAS  Google Scholar 

  21. J.-H. Ryu and D.N. Lee, The Effect of Precipitation on the Evolution of Recrystallization Texture in AA 8011 Aluminium Alloy Sheet, Mater. Sci. Eng., A, 2002, 336, p 225–232

    Article  Google Scholar 

  22. M. Jie, C.H. Cheng, L.C. Chan, and C.L. Chow, Forming Limit Diagrams of Strain-Rate-Dependent Sheet Metals, Int. J. Mech. Sci., 2009, 51, p 269–275

    Article  Google Scholar 

  23. R. Ponalagusamy, R. Narayanasamy, and K.R. Subramanian, Prediction of Limit Strains in Sheet Metals by Using New Generalized Yield Criteria, Mater. Des., 2007, 28, p 913–920

    Article  CAS  Google Scholar 

  24. P.H. Matin, L.M. Smith, and S. Petrusevski, A Method for Stress Space Forming Limit Diagram Construction for Aluminium Alloys, J. Mater. Process. Technol., 2006, 174, p 258–265

    Article  CAS  Google Scholar 

  25. K. Hariharan and C. Balaji, Material Optimization: A Case Study Using Sheet Metal-Forming Analysis, J. Mater. Process. Technol., 2009, 209, p 324–331

    Article  CAS  Google Scholar 

  26. K. Yoshida, T. Kuwabara, and M. Kuroda, Path-Dependence of the Forming Limit Stresses in a Sheet Metal, Int. J. Plast., 2007, 23, p 361–384

    Article  CAS  Google Scholar 

  27. H. Aretzm, O.S. Hopperstad, and O.-G. Lademo, Yield Function Calibration for Orthotropic Sheet Metals Based on Uniaxial and Plane Strain Tensile Tests, J. Mater. Process. Technol., 2007, 186, p 221–235

    Article  Google Scholar 

  28. W.C. Liu and J.G. Morris, Effect of Pre-treatment on Recrystallization and Recrystallization Textures of Cold Rolled CC AA 5182 Aluminum Alloy, Mater. Sci. Eng., A, 2003, 363, p 253–262

    Article  Google Scholar 

  29. N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of Aluminium Alloys at Elevated Temperatures—Part I: Material Characterization, Int. J. Plast., 2006, 22, p 314–341

    Article  CAS  Google Scholar 

  30. Z.-J. Wang, Y. Li, J.-G. Liu, and Y.-H. Zhang, Evaluation of Forming Limit in Viscous Pressure Forming of Automotive Aluminium Alloy 6k21-T4 Sheet, Trans. Nonferrous Met. Soc. China, 2007, 17, p 1169–1174

    Article  CAS  Google Scholar 

  31. D.W.A. Rees, A Tensor Function for the R Value of Sheet Metal, Appl. Math. Modelling, 1997, 21, p 579–590

    Article  Google Scholar 

  32. A.K. Gupta and D. Ravi Kumar, Formability of Galvanized Interstitial-Free Steel Sheets, J. Mater. Process. Technol., 2006, 172, p 225–237

    Article  CAS  Google Scholar 

  33. R. Narayanasamy and P. Padmanabhan, Modeling of Springback on Air Bending Process of Interstitial Free Steel Sheet Using Multiple Regression Analysis, Int. J. Interact. Des. Manuf., 2009, 3, p 25–33

    Article  Google Scholar 

  34. R. Narayanasamy, M. Ravi Chandran, C. Sathiya Narayanan, N.L. Parthasarathi, and R. Ravindran, Effect of Annealing Temperature on Void Coalescence in 5086 Aluminium Alloy Formed Under Different Stress Conditions, Int. J. Mech. Mater. Des., 2006, 3, p 293–307

    Article  Google Scholar 

  35. R. Narayanasamy, M. Ravi Chandran, and N.L. Parthasarathi, Effect of Annealing Temperature on Formability of Aluminium Grade 19000, Mater. Des., 2008, 29, p 1633–1653

    Article  CAS  Google Scholar 

  36. R. Ravindran, K. Manonmani, and R. Narayanasamy, An Analysis of Void Coalescence in Al 5052 Alloy Sheets Annealed at Different Temperature Formed Under Different Stress Conditions, Mater. Sci. Eng., A, 2009, 507, p 252–267

    Article  Google Scholar 

  37. R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures, Mater. Des., 2009, 30, p 1804–1817

    Article  CAS  Google Scholar 

  38. R. Ravindran, K. Manonmani, and R. Narayanasmay, An Analysis of Wrinkling Limit Diagrams of Aluminum Alloy 5005 Annealed at Different Temperatures, Int. J. Mater. Form., 2010, 3(2), p 103–115

    Article  Google Scholar 

  39. O. Engler and K. Lucke, Mechanisms of Recrystallization Texture Formation in Aluminium Alloys, Scripta Metall. Mater., 1992, 27, p 1527

    Article  CAS  Google Scholar 

  40. Y. Zhou and K.W. Neale, Predictions of Forming Limit Diagrams Using a Rate-Sensitive Crystal Plasticity Model, Int. J. Mech. Sci., 1995, 37, p 1

    Article  Google Scholar 

  41. P.D. Wu, S.R. Mac-Even, D.J. Lloyd, and K.W. Neale, Effect of Cube Texture on Sheet Metal Formability, Mater. Sci. Eng., A, 2004, 364, p 182–187

    Article  Google Scholar 

  42. M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett, Cube Texture in Hot-Rolled Aluminum Alloy 1050 (AA1050)—Nucleation and Growth Behavior, Acta Mater., 2008, 56(13), p 3098–3108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ganesh Sundararaman, Professor, IIT Madras and Dr. Indradev Samajdar, Professor, IIT Mumbai for their encouragement and support and National Facility of Texture and OIM, IIT Mumbai (Supported by DST (IRPHA)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Narayanasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velmanirajan, K., Thaheer, A.S.A., Narayanasamy, R. et al. Effect of Annealing Temperature in Al 1145 Alloy Sheets on Formability, Void Coalescence, and Texture Analysis. J. of Materi Eng and Perform 22, 1091–1107 (2013). https://doi.org/10.1007/s11665-012-0358-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0358-1

Keywords

Navigation