Skip to main content
Log in

The Inhibition Effect of Synthesized 4-Hydroxybenzaldehyde-1,3propandiamine on the Corrosion of Mild Steel in 1 M HCl

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion inhibition of mild steel in 1 M HCl by 4-hydroxybenzaldehyde-1,3propandiamine (4-HBP) has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. The experimental results suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. Polarization curves reveal that this organic compound is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of mild steel in 1 M HCl with the addition of the Schiff base was studied in the temperature range from 25 to 65 °C. The experimentally obtained adsorption isotherms follow the Langmuir equation. Activation parameters and thermodynamic adsorption parameters of the corrosion process such as E a, ΔH, ΔS, K ads, and ΔG ads were calculated by the obtained corrosion currents at different temperatures and using the adsorption isotherm. The morphology of mild steel surface after its exposure to 1 M HCl solution in the absence and in the presence of 4-HBP was examined by AFM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I. Ahamad, R. Prasad, and M.A. Quraishi, Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions, Corros. Sci., 2010, 52, p 933–942

    Article  CAS  Google Scholar 

  2. S. Issaadi, T. Douadi, A. Zouaoui, S. Chafaa, M.A. Khan, and G. Bouet, Novel Thiophene Symmetrical Schiff Base Compounds as Corrosion Inhibitor for Mild Steel in Acidic Media, Corros. Sci., 2011, 53, p 1484–1488

    Article  CAS  Google Scholar 

  3. R. Solmaz, Investigation of the Inhibition Effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on Mild Steel Corrosion in Hydrochloric Acid, Corros. Sci., 2010, 52, p 3321–3330

    Article  CAS  Google Scholar 

  4. I. Ahamad, Experimental and Quantum Chemical Characterization of the Adsorption of Some Schiff Base Compounds of Phthaloylthiocarbohydrazide on the Mild Steel in Acid Solutions, Mater. Chem. Phys., 2010, 124, p 1155–1165

    Article  CAS  Google Scholar 

  5. P. Lowmunkhong, D. Ungthararak, and P. Sutthivaiyakit, Tryptamine as a Corrosion Inhibitor of Mild Steel in Hydrochloric Acid Solution, Corros. Sci., 2010, 52, p 30–36

    Article  CAS  Google Scholar 

  6. K.C. Emregu, E. Duzgun, and O. Atakol, The Application of Some Polydentate Schiff Base Compounds Containing Aminic Nitrogens as Corrosion Inhibitors for Mild Steel in Acidic Media, Corros. Sci., 2006, 48, p 3243–3260

    Article  Google Scholar 

  7. S.M.A. Hosseini and A. Azimi, The Inhibition Effect of the New Schiff Base, Namely 2,20-[bis-N(4-choloro benzaldimin)]-1,10-dithio Against Mild Steel Corrosion, Mater. Corros., 2008, 59(1), p 41–45

    Article  CAS  Google Scholar 

  8. R. Solmaz, E. Altunbas, and G. Kardas, Adsorption and Corrosion Inhibition Effect of 2-((5-Mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol Schiff Base on Mild Steel, Mater. Chem. Phys., 2011, 125, p 796–801

    Article  CAS  Google Scholar 

  9. A.M. Badiea and K.N. Mohana, Effect of Temperature and Fluid Velocity on Corrosion Mechanism of Low Carbon Steel in Presence of 2-Hydrazino-4,7-dimethylbenzothiazole in Industrial Water Medium, Corros. Sci., 2009, 51, p 2231–2241

    Article  CAS  Google Scholar 

  10. K. Stanly Jacob and G. Parameswaran, Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Schiff Base Furointhiosemicarbazone, Corros. Sci., 2010, 52, p 224–228

    Article  CAS  Google Scholar 

  11. R. Hasanov, Electrochemical and Quantum Chemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution, Appl. Surf. Sci., 2007, 253, p 3913–3921

    Article  CAS  Google Scholar 

  12. R.A. Prabhu, T.V. Venkatesha, A.V. Shanbhag, G.M. Kulkarni, and R.G. Kalkhambkar, Inhibition Effects of Some Schiff Bases on the Corrosion of Mild Steel in Hydrochloric Acid Solution, Corros. Sci., 2008, 50, p 3356–3362

    Article  CAS  Google Scholar 

  13. S.A. Fairhurst, D.L. Hughes, U. Kleinkes, G.J. Leigh, J.R. Sanders, J. Weisner, Non-planar Co-ordination of the Schiff-Based Anion N,N′-2,2Dimethyltrimethylenebis [salicylideneiminate(2–)] to Vanadium, J. Chem. Soc. Dalton Trans., 1995, p 321–326

  14. P. Geerlings, F.D. Proft, and W. Langenaeker, Conceptual Density Functional Theory, Chem. Rev., 2003, 103, p 1793–1873

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetticonelation Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 1988, 37, p 785–789

    Article  CAS  Google Scholar 

  16. G.A. Petersson and M.A. Al-Laham, A Complete Basis Set Model Chemistry. II, Open-shell Systems and the Total Energy of the First-Row Atoms, J. Chem. Phys., 1991, 94, p 6081–6086

    Article  CAS  Google Scholar 

  17. G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, and J. Mantzaris, A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 1988, 89, p 2193–2219

    Article  CAS  Google Scholar 

  18. J.R. MacDonald, Note on the Parameterization of the Constant-Phase Admittance Element, Solid State Ion., 1984, 13, p 147–149

    Article  CAS  Google Scholar 

  19. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, and M.G. Mahjani, Kinetic Interpretation of a Negative Time Constant Impedance of Glucose Electrooxidation, J. Phys. Chem. B, 2008, 112, p 15933–15940

    Article  CAS  Google Scholar 

  20. N.A. Negm, Y.M. Elkholy, M.K. Zahran, and S.M. Tawfik, Corrosion Inhibition Efficiency and Surface Activity of Benzothiazol-3-ium Cationic Schiff Base Derivatives in Hydrochloric Acid, Corros. Sci., 2010, 52, p 3523–3536

    Article  CAS  Google Scholar 

  21. N.A. Negm, F.M. Ghuiba, and S.M. Tawfik, Novelis Oxazolium Cationic Schiff Base Compounds as Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid, Corros. Sci., 2011, 53, p 3566–3575

    Article  CAS  Google Scholar 

  22. M.A. Hegazy, A Novel Schiff Base-based Cationic Gemini Surfactants: Synthesis and Effect on Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution, Corros. Sci., 2009, 51, p 2610–2618

    Article  CAS  Google Scholar 

  23. K. Mallaiya, R. Subramaniam, and S.S. Srikandan, Electrochemical Characterization of the Protective Film Formed by the Unsymmetrical Schiff’s Base on the Mild Steel Surface in Acid Media, Electrochim. Acta, 2011, 56, p 3857–3863

    Article  CAS  Google Scholar 

  24. M.A. Migahed and I.F. Nassar, Corrosion Inhibition of Tubing Steel During Acidization of Oil and Gas Wells, Electrochim. Acta, 2008, 53, p 2877–2882

    Article  CAS  Google Scholar 

  25. H. Keles, Electrochemical and Thermodynamic Studies to Evaluate Inhibition Effect of 2-[(4-Phenoxy-phenylimino) methyl]-phenol in 1 M HCl on Mild Steel, Mater. Chem. Phys., 2011, 130, p 1317–1324

    Article  CAS  Google Scholar 

  26. K.C. Emregül and O. Atakol, Corrosion Inhibition of Mild Steel with Schiff Base Compounds in 1 M HCl, Mater. Chem. Phys., 2003, 82, p 188–193

    Article  Google Scholar 

  27. I. Danaee, Kinetics and Mechanism of Palladium Electrodeposition on Graphite Electrode by Impedance and Noise Measurements, J. Electroanal. Chem., 2011, 662, p 415–420

    Article  CAS  Google Scholar 

  28. I. Danaee and S. Noori, Kinetics of the Hydrogen Evolution Reaction on NiMn Graphite Modified Electrode, Int. J. Hydrogen Energy, 2011, 36, p 12102–12111

    Article  CAS  Google Scholar 

  29. F. Bentiss, M. Traisnel, H. Vezin, H.F. Hildebrand, and M. Lagrenee, 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as Corrosion Inhibitors for Mild Steel in Acidic Media, Corros. Sci., 2004, 46, p 2781–2792

    Article  CAS  Google Scholar 

  30. R.A. Prabhu, T.V. Venkatesha, A.V. Shanbhag, B.M. Praveen, G.M. Kulkarni, and R.G. Kalkhambkar, Quinol-2-thione Compounds as Corrosion Inhibitors for Mild Steel in Acid Solution, Mater. Chem. Phys., 2008, 108, p 283–289

    Article  CAS  Google Scholar 

  31. S. Zhang, Z. Tao, S. Liao, and F. Wu, Substitutional Adsorption Isotherms and Corrosion Inhibitive Properties of Some Oxadiazol-Triazole Derivative in Acidic Solution, Corros. Sci., 2010, 52, p 3126–3132

    Article  CAS  Google Scholar 

  32. G.E. Badr, The Role of Some Thiosemicarbazide Derivatives as Corrosion Inhibitors for C-Steel in Acidic Media, Corros. Sci., 2009, 51, p 2529–2536

    Article  CAS  Google Scholar 

  33. M.A. Hegazy, H.M. Ahmed, and A.S. El-Tabei, Investigation of the Inhibitive Effect of p-Substituted4-(N,N,N-dimethyldodecylammonium bromide)benzylidene-benzene-2-yl-amineon Corrosion of Carbon Steel Pipelines in Acidic Medium, Corros. Sci., 2011, 53, p 671–678

    Article  CAS  Google Scholar 

  34. J. Aljourani, K. Raeissi, and M.A. Golozar, Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution, Corros. Sci., 2009, 51, p 1836–1843

    Article  CAS  Google Scholar 

  35. I.B. Obot and N.O. Obi-Egbedi, Anti-corrosive Properties of Xanthone on Mild Steel Corrosion in Sulphuric Acid: Experimental and Theoretical Investigations, Curr. Appl. Phys., 2011, 11, p 382–392

    Article  Google Scholar 

  36. L. Herrag, A. Chetouani, S. Elkadiri, B. Hammouti, and A. Aouniti, Pyrazole Derivatives as Corrosion Inhibitors for Steel in Hydrochloric Acid, Portugal. Ectrochim. Acta, 2008, 26, p 211–220

    Article  CAS  Google Scholar 

  37. E. Bayol, T. Gurtenb, A.A. Gurtena, and M. Erbil, Interactions of Some Schiff Base Compounds with Mild Steel Surface in Hydrochloric Acid Solution, Mater. Chem. Phys., 2008, 112, p 624–630

    Article  CAS  Google Scholar 

  38. H. Keles, M. Keles, I. Dehri, and O. Serindag, The Inhibitive Effect of 6-Amino-m-cresol and its Schiff Base on the Corrosion of Mild Steel in 0.5 M HCl Medium, Mater. Chem. Phys., 2008, 112, p 173–179

    Article  CAS  Google Scholar 

  39. H. Keles, M. Keles, I. Dehri, and O. Serindag, Adsorption and Inhibitive Properties of Aminobiphenyl and its Schiff Base on Mild Steel Corrosion in 0.5 M HCl Medium, Colloids Surf. A, 2008, 320, p 138–145

    Article  CAS  Google Scholar 

  40. S. Ghareba and S. Omanovic, Interaction of 12-Aminododecanoic Acid with a Carbon Steel Surface: Towards the Development of ‘green’ Corrosion Inhibitors, Corros. Sci., 2010, 52, p 2104–2113

    Article  CAS  Google Scholar 

  41. X. Li and G. Mu, Tween-40 as Corrosion Inhibitor for Cold Rolled Steel in Sulphuric Acid: Weight Loss Study, Electrochemical Characterization, and AFM, Appl. Surf. Sci., 2005, 252, p 1254–1265

    Article  CAS  Google Scholar 

  42. F. Zhang, J. Pan, and P.M. Claesson, Electrochemical and AFM Studies of Mussel Adhesive Protein (Mefp-1) as Corrosion Inhibitor for Carbon Steel, Electrochim. Acta, 2011, 56, p 1636–1645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Danaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, O., Danaee, I., Rashed, G.R. et al. The Inhibition Effect of Synthesized 4-Hydroxybenzaldehyde-1,3propandiamine on the Corrosion of Mild Steel in 1 M HCl. J. of Materi Eng and Perform 22, 1054–1063 (2013). https://doi.org/10.1007/s11665-012-0348-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0348-3

Keywords

Navigation