Skip to main content
Log in

Corrosion Behavior of Alloy 600 in Simulated Nuclear High Level Waste Medium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nickel-based alloys are being considered as candidate materials for the storage of high level waste. In the present investigation, Alloy 600 was assessed by potentiodynamic anodic polarization technique for its corrosion behavior in the as-received, solution annealed, and sensitized condition in 3 M HNO3 and 3 M HNO3 containing simulated high level waste. From the results of the investigation, it was found that the solution annealed specimen possesses superior corrosion resistance compared to the as-received and sensitized specimen. Double loop electrochemical potentiokinetic reactivation test was carried out to study the degree of sensitization. The effect of different concentrations of chloride ions in 3 M HNO3 at 25 °C indicated tendency for pitting as the concentration of chloride ions was increased. Microstructural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. X-ray photoelectron spectroscopy study was carried out to investigate the passive film formed in 3 M HNO3 and 3 M HNO3 simulated high level waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Vehovar and M. Tandler, Stainless Steel Containers for the Storage of Low and Medium Level Radioactive Waste, Nucl. Eng. Des., 2001, 206(1), p 21–33

    Article  CAS  Google Scholar 

  2. P.K. Samantaroy, S. Girija, R. Paul, U. Kamachi Mudali, and Baldev Raj, Corrosion Behavior of Alloy 690 and Alloy 693 in Simulated Nuclear High Level Waste Medium, J. Nucl. Mater., 2011, 418(1–3), p 27–37

    Article  CAS  Google Scholar 

  3. R.B. Rebak and P. Crook, Nickel Alloys for Corrosive Environments, Adv. Mater. Process., 2000, 157(2), p 37–42

    CAS  Google Scholar 

  4. A.J. Bard, J. Jordan, and R. Parsons, Standard Potentials in Aqueous Solutions, Marshal Dekker, New York, 1985

    Google Scholar 

  5. G.S. Was, Grain-Boundary Chemistry and Intergranular Fracture in Austenitic Nickel-Base Alloys—A Review, Corrosion, 1990, 46(4), p 319–330

    Article  CAS  Google Scholar 

  6. G. Dominguez-Sanchez, C.G. Tiburcio, F.M. Almeraya-Calderon, and A. Martinez-Villafane, Electrochemical Study About Microorganisms Induced Corrosion in Inconel, Port. Electrochim. Acta, 2005, 23(1), p 47–53

    Article  CAS  Google Scholar 

  7. J.D. Kim and J.H. Moon, C-ring Stress Corrosion Test for Inconel 600 and Inconel 690 Sleeve Joint Welded by Nd:YAG Laser, Corros. Sci., 2004, 46(4), p 807–818

    Article  CAS  Google Scholar 

  8. Y.S. Lim, H.P. Kim, J.H. Han, J.S. Kim, and H.S. Kwon, Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600, Corros. Sci., 2001, 43(7), p 1321–1335

    Article  CAS  Google Scholar 

  9. C.B. In, S.P. Kim, Y.I. Kim, W.W. Kim, I.H. Kuk, S.S. Chun, and W.J. Lee, Pitting Resistance of TiN Deposited on Inconel 600 by Plasma-Assisted Chemical Vapor Deposition, J. Nucl. Mater., 1994, 211(3), p 223–230

    Article  CAS  Google Scholar 

  10. G.P. Airey, Effect of Processing Variables on the Caustic Stress Corrosion Resistance of Inconel Alloy 600, Corrosion, 1980, 36(1), p 9–17

    CAS  Google Scholar 

  11. S. Takaya, T. Suzuki, T. Uchimoto, and K. Miya, Magnetic Force Microscopy Observation of Sensitized Inconel 600, J. Appl. Phys., 2002, 91(10), p 7011–7013

    Article  CAS  Google Scholar 

  12. S. Girija, V.R. Raju, U. Kamachi Mudali, and R.K. Dayal, Corrosion Assessment of Type 304L Stainless Steel in Nitric Acid, Corros. Eng. Sci. Technol., 2003, 38(4), p 309–312

    Article  Google Scholar 

  13. S. Girija, U. Kamachi Mudali, V. Shankar, and R.K. Dayal, Microstructure and Pitting Corrosion Aspects of As-weld and Thermally Aged 316 Stainless Steel SMA Weld Deposits Containing Different Nitrogen Contents, Trans. Indian Inst. Met., 2002, 55(5), p 439–446

    Google Scholar 

  14. D.R. Johns and F.R. Beckitt, Factors Influencing the Thermal Stabilisation of Alloy 600 Tubing Against Intergranular Corrosion, Corros. Sci., 1990, 30(2–3), p 223–237

    Article  CAS  Google Scholar 

  15. Y.S. Sato, P. Arkom, H. Kokawa, T.W. Nelson, and R.J. Steel, Effect of Microstructure on Properties of Friction Stir Welded Inconel Alloy 600, Mater. Sci. Eng., A, 2008, 477(12), p 250–258

    Google Scholar 

  16. M. Casales, V.M. Salinas-Bravo, A. Martinez-Villafane, and J.G. Gonzalez-Rodriguez, Effect of Heat Treatment on the Stress Corrosion Cracking of Alloy 690, Mater. Sci. Eng., A, 2002, 332(1–2), p 223–230

    Google Scholar 

  17. M.K. Ahn, H.S. Kwon, and J.H. Lee, Predicting Susceptibility of Alloy 600 to Intergranular Stress Corrosion Cracking Using a Modified Electrochemical Potentiokinetic Reactivation Test, Corrosion, 1995, 51(6), p 441–449

    Article  CAS  Google Scholar 

  18. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe, Optimization of Grain Boundary Character Distribution for Intergranular Corrosion Resistant 304 Stainless Steel by Twin-Induced Grain Boundary Engineering, Acta Mater., 2002, 50(9), p 2331–2341

    Article  CAS  Google Scholar 

  19. F. Balboud, G. Sanchez, P. Fauvet, G. Santarini, and G. Picard, Mechanism of Corrosion of AISI, 304L Stainless Steel in the Presence of Nitric Acid Condensates, Corros. Sci., 2000, 42(10), p 1685–1707

    Article  Google Scholar 

  20. S. Ningshen, U. Kamachi Mudali, G. Amarendra, and Baldev Raj, Corrosion Assessment of Nitric Acid Grade Austenitic Stainless Steels, Corros. Sci., 2009, 51(2), p 322–329

    Article  CAS  Google Scholar 

  21. D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson, Corrosion of 304 Stainless Steel Exposed to Nitric Acid-Chloride Environments, Corros. Sci., 1997, 39(12), p 2067–2093

    Article  CAS  Google Scholar 

  22. M.G. Fontana, Corrosion Engineering, McGraw Hill, New York, 1986, p 26

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Ramesh Chandra, IIT, Roorkee and Mr. B. Shashank Dutt of Materials Development and Technology Group, IGCAR for the help in SEM observation of the specimens. Also, thanks to Mr. T. Nandakumar of Corrosion Science & Technology Group, IGCAR for the technical support in carrying out the specimen preparation for the polarization tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kamachi Mudali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samantaroy, P.K., Suresh, G., Krishna, N.G. et al. Corrosion Behavior of Alloy 600 in Simulated Nuclear High Level Waste Medium. J. of Materi Eng and Perform 22, 1041–1053 (2013). https://doi.org/10.1007/s11665-012-0345-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0345-6

Keywords

Navigation