Skip to main content

Advertisement

Log in

Tailoring Selective Laser Melting Process Parameters for NiTi Implants

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Appl. Surf. Sci., 2007, 254(4), p 980–983

    Article  CAS  Google Scholar 

  2. D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Bioactive Ti Metal Analogous to Human Cancellous Bone: Fabrication by Selective Laser Melting and Chemical Treatments, Acta Biomater., 2010, 7(3), p 1398–1406

    Article  Google Scholar 

  3. L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, and C.J. Sutcliffe, Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone In-Growth Constructs, Suitable for Orthopedic Applications, J. Biomed. Mater. Res. Part B, 2009, 89(2), p 325–334

    Google Scholar 

  4. F.C. Fierz, F. Beckmann, M. Huser, S.H. Irsen, B. Leukers, F. Witte, O. Degistirici, A. Andronache, M. Thie, and B. Müller, The Morphology of Anisotropic 3D-Printed Hydroxyapatite Scaffolds, Biomaterials, 2008, 29(28), p 3799–3806

    Article  CAS  Google Scholar 

  5. B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, and J.J. Jacobs, Experimental and Clinical Performance of Porous Tantalum in Orthopedic Surgery, Biomaterials, 2006, 27(27), p 4671–4681

    Article  CAS  Google Scholar 

  6. J.S. Kim, S.H. Lee, J.H. Kang, V.E. Gjunter, S.B. Kang, T.H. Nam, and Y.S. Kwon, The Effect of Processing Variables on the Microstructure and Mechanical Property of a Porous Body Produced by the SHS Method, SMST-2000, Proceedings of SMST 2000, 2000, p 77

  7. T. Imwinkelried, Mechanical Properties of Open-Pore Titanium Foam, J. Biomed Mater. Res. Part A, 2007, 81(4), p 964–970

    Article  Google Scholar 

  8. A. Bansiddhi and D.C. Dunand, Shape-Memory NiTi Foams Produced by Replication of NaCl Space-Holders, Acta Biomater., 2008, 4(6), p 1996–2007

    Article  CAS  Google Scholar 

  9. R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, and T. Imwinkelried, Characterization of the Structure and Permeability of Titanium Foams for Spinal Fusion Devices, Acta Biomater., 2009, 5(1), p 477–487

    Article  CAS  Google Scholar 

  10. R. Schumacher, A. Yildiz, M. Näf, M. de Wild, and E. Schkommodau, Manipulation of the Elastic Behaviour of Artificial Titanium Bone Grafts, Eur. Cells Mater., 2011, 22(Suppl. 1), p 10

    Google Scholar 

  11. R. Huiskes, H. Weinans, and B. Van Rietbergen, The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials, Clin. Orthop. Rel. Res., 1992, 274, p 124–134

    Google Scholar 

  12. H. Meier, C. Haberland, J. Frenzel, and R. Zarnetta, Selective Laser Melting of NiTi Shape Memory Components, Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press-Taylor & Francis Group, 2010, p 233–238

  13. A.T. Clare, P.R. Chalker, S. Davies, C.J. Sutcliffe, and S. Tsopanos, Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications, Int. J. Mech. Mater. Des., 2008, 4, p 181–187

    Article  CAS  Google Scholar 

  14. S. Dudziak, M. Gieseke, H. Haferkamp, S. Barcikowski, and D. Kracht, Functionality of Laser-Sintered Shape Memory Micro-Actuators, Laser Assisted Net Shape Engineering 6, Proceedings of the Lane 2010, Part 2, Elsevier Science Bv, 2010, p 607–615

  15. T. Bormann, S. Friess, M. de Wild, R. Schumacher, G. Schulz, and B. Müller, Determination of Strain Fields in Porous Shape Memory Alloys Using Micro Computed Tomography, Proc SPIE, 2010, 7804, p 78041M

    Article  Google Scholar 

  16. A. Bandyopadhyay, B.V. Krishna, W.C. Xue, and S. Bose, Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants, J. Mater. Sci. Mater. Med., 2009, 20, p 29–34

    Article  Google Scholar 

  17. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Laser Processing of Net-Shape NiTi Shape Memory Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(5), p 1096–1103

    Article  Google Scholar 

  18. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Fabrication of Porous NiTi Shape Memory Alloy Structures Using Laser Engineered Net Shaping, J. Biomed. Mater. Res. Part B, 2009, 89(2), p 481–490

    Google Scholar 

  19. H. Meier, C. Haberland, and J. Frenzel, Structural and Functional Properties of NiTi Shape Memory Alloy Produced by Selective Laser Melting, Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press-Taylor & Francis Group, 2012, p 291–296

  20. ASTM, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, F2063, ASTM International

  21. T.W. Duerig and A.R. Pelton, Ti-Ni Shape Memory Alloys, Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, Ed., ASM International, Materials Park, 1994

    Google Scholar 

  22. T. Bormann, R. Schumacher, B. Müller, and M. de Wild, Fabricating NiTi Shape Memory Scaffolds by Selective Laser Melting, Eur. Cells Mater., 2011, 22(Suppl. 1), p 12

    Google Scholar 

  23. H. Meier and C. Haberland, Experimental Studies on Selective Laser Melting of Metallic Parts, Materialwiss. Werkst., 2008, 39(9), p 665–670

    Article  CAS  Google Scholar 

  24. Prüfung metallischer Werkstoffe - Zugproben, DIN 50125:2004-01, Deutsches Institut für Normung e.V.

  25. H. Schumann and H. Oettel, Metallografie, Wiley-VCH, Weinheim, 2005

    Google Scholar 

  26. K. Escher and M. Huhner, Metallographical Preparation of NiTi Shape Memory Alloys, Prakt. Metallogr., 1990, 27(5), p 231–235

    CAS  Google Scholar 

  27. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50(17), p 4255–4274

    Article  CAS  Google Scholar 

  28. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.-X. Wagner, and G. Eggeler, Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58, p 3444–3458

    Article  CAS  Google Scholar 

  29. E. Schuller, M. Bram, H.P. Buchkremer, and D. Stover, Phase Transformation Temperatures for NiTi Alloys Prepared by Powder Metallurgical Processes, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2004, 378(1–2), p 165–169

    Article  Google Scholar 

  30. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2009, 58(9), p 3303–3312

    Article  Google Scholar 

  31. E. Chlebus, B. Kuznicka, T. Kurzynowski, and B. Dybala, Microstructure and Mechanical Behaviour of Ti-6Al-7Nb Alloy Produced by Selective Laser Melting, Mater. Charact., 2011, 62(5), p 488–495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The multi-disciplinary team gratefully acknowledges the financial support of the Swiss National Science Foundation within the research program NRP 62 “Smart Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael de Wild.

Additional information

This article is an invited paper selected from presentations at the International Conference on Shape Memory and Superelastic Technologies 2011, held November 6-9, 2011, in Hong Kong, China, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, T., Schumacher, R., Müller, B. et al. Tailoring Selective Laser Melting Process Parameters for NiTi Implants. J. of Materi Eng and Perform 21, 2519–2524 (2012). https://doi.org/10.1007/s11665-012-0318-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0318-9

Keywords

Navigation