Skip to main content
Log in

Corrosion Protection Properties of 4-[(E)-[(2,4-Dihydroxy phenyl)methylidene] amino]-6-methyl-3-sulfanylidene-2,3,4,5-tetrahydro-1,2,4-triazin-5-one [DMSTT] Toward Mild Steel in Sulfuric Acid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The inhibition of mild steel corrosion in aerated 0.5 N H2SO4 solution was investigated using potentiodynamic polarization studies (Tafel), linear polarization studies, electrochemical impedance spectroscopy studies, adsorption studies, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, the effect of temperature, degree of surface coverage, adsorption kinetics, and surface morphology are investigated. The inhibition efficiency increased markedly with increase in the additive concentration and decreased slightly with increasing temperature. The presence of DMSTT decrease the double-layer capacitance and increase the charge transfer resistance. The value of activation energy (E a) of metal corrosion, adsorption equilibrium constant (K ads), and free energy of adsorption (ΔG ads) were calculated from the temperature dependence of corrosion current. The adsorption of inhibitor molecule on mild steel surface follow Langmuir isotherm. DMSTT offers excellent inhibition properties and acts as a mixed-type inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. John, B. Joseph, K.K. Aravindakshan, and A. Joseph, Inhibition of Mild Steel Corrosion in 1 M Hydrochloric Acid by 4-(N,N-Dimethylaminobenzylidine)-3-mercapto-6-methyl-1,2,4-triazin(4H)-5-one, Mater. Chem. Phys., 2010, 122, p 374–379

    Article  CAS  Google Scholar 

  2. S. John, B. Joseph, K.V. Balakrishnan, K.K. Aravindakshan, and A. Joseph, Electrochemical and Quantum Chemical Study of 4-[(E)-[(2,4-Dihydroxy phenyl) methylidene] amino]-6-methyl-3-sulphanylidine-2,3,4,5-tetrahydro-1,2,4-triazin-5-one, Mater. Chem. Phys., 2010, 123, p 218–224

    Article  CAS  Google Scholar 

  3. A. Fiala, A. Chibani, A. Darchen, A. Boulkamh, and K. Djebbar, Investigations of the Inhibition of Copper Corrosion in Nitric Acid Solutions by Ketene Dithioacetal Derivatives, Appl. Surf. Sci., 2007, 253, p 9347–9356

    Article  CAS  Google Scholar 

  4. F. Zucchi, G. Trabanelli, and C. Monticelli, The Inhibition of Copper Corrosion in 0.1 M NaCl Under Heat Exchange Conditions, Corros. Sci., 1996, 38, p 147–154

    Article  CAS  Google Scholar 

  5. J.P. Chopart, J. Douglade, P. Fricoteaux, and A. Olivier, Electrodeposition and Electrodissolution of Copper with a Magnetic Field: Dynamic and Stationary Investigations, Electrochim. Acta, 1991, 36, p 459–463

    Article  CAS  Google Scholar 

  6. M.D. Pritzker and T.Z. Fahidy, Morphological Stability of a Planar Metal Electrode During Potentiostatic Electrodeposition and Electrodissolution, Electrochim. Acta, 1992, 37, p 103–112

    Article  CAS  Google Scholar 

  7. S. Magaino, Corrosion Rate of Copper Rotating-Disk-Electrode in Simulated Acid Rain, Electrochim. Acta, 1997, 42, p 377–382

    Article  CAS  Google Scholar 

  8. S. Krzewska, Impedance Investigation of the Mechanism of Copper Electrodeposition from Acidic Perchlorate Electrolyte, Electrochim. Acta, 1997, 42, p 3531–3540

    Article  CAS  Google Scholar 

  9. M.U. Macdonald, S. Silvia Real, and D.D. Macdonald, Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Impedance Data, J. Electrochem. Soc., 1986, 133, p 2018–2024

    Article  Google Scholar 

  10. J. Bastidas, J. De Damborenea, and A.J. Va Zquez, Butyl Substituents in n-Butylamine and Their Influence on Mild Steel Corrosion Inhibition in Hydrochloric Acid, J. Appl. Electrochem., 1997, 27, p 345–349

    Article  CAS  Google Scholar 

  11. E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, and I. Love, Quantum Chemical Studies of Some Rhodanine Azosulpha Drugs as Corrosion Inhibitors for Mild Steel in Acidic Medium, Int. J. Quantum Chem., 2010, 110, p 1003–1018

    Article  CAS  Google Scholar 

  12. G. Gece, The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies, Corros. Sci., 2008, 50, p 2981–2992

    Article  CAS  Google Scholar 

  13. R. Solmaz, G. Kardas, M. Culha, B. Yazici, and M. Erbil, Investigation of Adsorption and Inhibitive Effect of 2-Mercaptothiazoline on Corrosion of Mild Steel in Hydrochloric Acid Media, Electrochim. Acta, 2008, 53, p 5941–5952

    Article  CAS  Google Scholar 

  14. R. Fuchs-Godec, The Adsorption CMC Determination and Corrosion Inhibition of Some N-Alkyl Quaternary Ammonium Salts on Carbon Steel Surface in 2 M H2SO4, Colloids. Surf. A, 2006, 280, p 130–139

    Article  CAS  Google Scholar 

  15. A. Chetouani, B. Hammouti, T. Benhadda, and M. Daoudi, Inhibitive Action of Bipyrazolic Type Organic Compounds Towards Corrosion of Pure Iron in Acidic Media, Appl. Surf. Sci., 2005, 249, p 375–380

    Article  CAS  Google Scholar 

  16. N. Labjar, M. Lebrini, F. Bentiss, N.E. Chihib, S. Hajjaji, and C. Jama, Corrosion Inhibition of Carbon Steel and Antibacterial Properties of Aminotris-(methylenephosphonic) Acid, Mater. Chem. Phys., 2010, 119, p 330–336

    Article  CAS  Google Scholar 

  17. M.A. Amin, S.S. Abed El-Rehim, E.E.F. El-Sherbini, and R.S. Bayyomi, The Inhibition of Low Carbon Steel Corrosion in Hydrochloric Acid Solutions by Succinic Acid: Part I. Weight Loss, Polarization, EIS, PZC, EDX and SEM Studies, Electrochim. Acta, 2007, 52, p 3588–3600

    Article  CAS  Google Scholar 

  18. M.A. Veloz and I. Gonzalez, Electrochemical Study of Carbon Steel Corrosion in Buffered Acetic Acid Solutions with Chlorides and H2S, Electrochim. Acta, 2002, 48, p 135–144

    Article  CAS  Google Scholar 

  19. E.M. Sherif and S.M. Park, Effects of 1,4-Naphthoquinone on Aluminum Corrosion in 0.50 M Sodium Chloride Solutions, Electrochim. Acta, 2006, 51, p 1313–1321

    Article  CAS  Google Scholar 

  20. F. Mansfeld and M.W. Kendig, Determination of the Polarization Resistance from Impedance Measurements, Werkst. Korros., 1983, 34, p 397–401

    Article  CAS  Google Scholar 

  21. R. Macdonald and D.R. Franceshetti, Impedance Spectroscopy, Wiley, New York, 1987

    Google Scholar 

  22. M. Outirite, M. LagreneeLebrini, M. Traisnel, C. Jama, H. Vezin, and F. Bentiss, AC Impedance, X-Ray Photoelectron Spectroscopy and Density Functional Theory Studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as Efficient Corrosion Inhibitors for Carbon Steel Surface in Hydrochloric Acid Solution, Electrochim. Acta, 2010, 55, p 1670–1681

    Article  CAS  Google Scholar 

  23. D.A. Lopez, S.N. Simison, and S.R. de Sanchez, The Influence of Steel Microstructure on CO2 Corrosion. EIS Studies on the Inhibition Efficiency of Benzimidazole, Electrochim. Acta, 2003, 48, p 845–854

    Article  CAS  Google Scholar 

  24. K.F. Khaled and M.M. Al-Qahtani, The Inhibitive Effect of Some Tetrazole Derivatives Towards Al Corrosion in Acid Solution: Chemical, Electrochemical and Theoretical Studies, Mater. Chem. Phys., 2009, 113, p 150–158

    Article  CAS  Google Scholar 

  25. M.R. Saleh and A.M. Shams El Din, Efficiency of Organic Acids and Their Anions in Retarding the Dissolution of Aluminium, Corros. Sci., 1981, 12, p 688–697

    Google Scholar 

  26. J. Fang and J. Li, Quantum Chemistry Study on the Relationship Between Molecular Structure and Corrosion Inhibition Efficiency of Amides, J. Mol. Struct. (Theochem), 2002, 593, p 179–185

    Article  CAS  Google Scholar 

  27. M.K. Awad, R.M. Issa, and F.M. Atlam, Theoretical Investigation of the Inhibition of Corrosion by Some Triazole Schiff Bases, Mater. Corros., 2009, 60, p 813–819

    Article  CAS  Google Scholar 

  28. W. Li, X. Zhao, F. Liu, J. Deng, and B. Hou, Investigation on the Corrosion Inhibitive Effect of 2H-Pyrazole-Triazole Derivatives in Acidic Solution, Mater. Corros., 2009, 60, p 287–293

    Article  CAS  Google Scholar 

  29. R. Hasanov, M. Sadikoglu, and S. Bilgic, Electrochemical and Quantum Chemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution, Appl. Surf. Sci., 2007, 253, p 3913–3921

    Article  CAS  Google Scholar 

  30. M.A. Amin, K.F. Khaledand, and S.A. Fadl-Allah, Testing Validity of the Tafel Extrapolation Method for Monitoring Corrosion of Cold Rolled Steel in HCl Solutions—Experimental and Theoretical Studies, Corros. Sci., 2010, 52, p 140–151

    Article  CAS  Google Scholar 

  31. H. wang, X. Wang, H. Wang, L. Wang, and A. Liu, DFT Study of New Bipyrazole Derivatives and Their Potential Activity as Corrosion Inhibitors, J. Mol. Model., 2007, 1, p 147–153

    Google Scholar 

  32. K.F. Khaled and M.A. Amin, Corrosion Monitoring of Mild Steel in Sulphuric Acid Solutions in Presence of Some Thiazole Derivatives—Molecular Dynamics, Chemical and Electrochemical Studies, Corros. Sci., 2009, 51, p 1964–1975

    Article  CAS  Google Scholar 

  33. S. Xia, M. Qiu, L. Yu, F. Liu, and H. Zhao, Molecular Dynamics and Density Functional Theory Study on Relationship Between Structure of Imidazoline Derivatives and Inhibition Performance, Corros. Sci., 2008, 50, p 2021–2029

    Article  CAS  Google Scholar 

  34. S.V. Ramesh and A.V. Adhikari, N-[4-(Diethylamino)benzylidine]-3-{[8-(trifluoromethyl) quinolin-4-yl]thio}propano hydrazide) as an Effective Inhibitor of Mild Steel Corrosion in Acid Media, Mater. Chem. Phys., 2009, 115, p 618–627

    Article  CAS  Google Scholar 

  35. K. Babic-Samardzija, C. Lupu, N. Hackerman, and A.R. Barron, Inhibitive Properties, Adsorption and Surface Study of Butyn-1-ol and pentyn-1-ol Alcohols as Corrosion Inhibitors for Iron in HCl, J. Mater. Chem., 2005, 15, p 1908–1916

    Article  CAS  Google Scholar 

  36. P. Zhao, Q. Liang, and Y. Li, Electrochemical, SEM/EDS and Quantum Chemical Study of Phthalocyanines as Corrosion Inhibitors for Mild Steel in 1 mol/l HCl, Appl. Surf. Sci., 2005, 252, p 1596–1607

    Article  CAS  Google Scholar 

  37. H.L. Wang, H.B. Fan, and J.S. Zheng, Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by a Mercapto-Triazole Compound, Mater. Chem. Phys., 2002, 77, p 655–661

    Article  Google Scholar 

  38. A.K. Singh and M.A. Quraishi, Inhibiting Effects of 5-Substituted Isatin-Based Mannich Bases on the Corrosion of Mild Steel in Hydrochloric Acid Solution, J. Appl. Electrochem., 2010, 40, p 1293–1306

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Sam John is grateful to CSIR New Delhi for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, S., Joseph, A. Corrosion Protection Properties of 4-[(E)-[(2,4-Dihydroxy phenyl)methylidene] amino]-6-methyl-3-sulfanylidene-2,3,4,5-tetrahydro-1,2,4-triazin-5-one [DMSTT] Toward Mild Steel in Sulfuric Acid. J. of Materi Eng and Perform 22, 483–491 (2013). https://doi.org/10.1007/s11665-012-0292-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0292-2

Keywords

Navigation