Skip to main content
Log in

Hydrothermal Growth Mechanism of Controllable Hydrophilic Titanate Nanostructures on Medical NiTi Shape Memory Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different titanate nanostructures were deposited on the surface of NiTi by a hydrothermal process using 5-20 M NaOH at 90-150 °C for 6-72 h. SEM and XRD analyses revealed that different structures such as nanoflakes, nanorods, nanograins, nanofibers, microwhiskers, etc., were formed. As the processing time was increased, the nanoflakes evolve into nanofibers or microwhiskers. Compared with pristine NiTi, the new surfaces displayed different degrees of hydrophilicity. A formation mechanism adopting the growth unit model of anion coordination-polyhedra is proposed. The general formation of titanate nanostructures can be visualized as a sequence of nucleation, formation, and combination of the growth units. The excellent controllability of this process with precise accuracy offers incredible potential in the surface modification of NiTi biomedical materials for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160

    Google Scholar 

  2. C.L. Chu, R.M. Wang, T. Hu, L.H. Yin, Y.P. Pu, P.H. Lin, S.L. Wu, C.Y. Chung, K.W.K. Yeung, and Paul K. Chu, Surface Structure and Biomedical Properties of Chemically Polished and Electropolished NiTi Shape Memory Alloys, Mater. Sci. Eng. C, 2008, 28, p 1430–1434

    Article  CAS  Google Scholar 

  3. X. Liu, P.K. Chu, and C. Ding, Surface Nano-Functionalization of Biomaterials, Mater. Sci. Eng. R, 2004, 47, p 49–121

    Article  Google Scholar 

  4. S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467

    Article  CAS  Google Scholar 

  5. E. Conforto, D. Caillard, L. Muller, and F.A. Muller, The Structure of Titanate Nanobelts Used as Seeds for the Nucleation of Hydroxyapatite at the Surface of Titanium Implants, Acta Biomater., 2008, 4, p 1934–1943

    Article  CAS  Google Scholar 

  6. M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D.W. Wilkinson, and R.O.C. Oreffo, The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder, Nat. Mater., 2007, 6, p 997–1003

    Article  CAS  Google Scholar 

  7. M. Karlsson and L. Tang, Surface Morphology and Adsorbed Proteins Affect Phagocyte Responses to Nano-Porous Alumina, J. Mater. Sci. Mater. Med., 2006, 17, p 1101–1111

    Article  CAS  Google Scholar 

  8. A.-S. Andersson, J. Brink, U. Lidberg, and D.S. Sutherland, Influence of Systematically Varied Nanoscale Topography on the Morphology of Epithelial Cells, IEEE Trans. Nanobiosci., 2003, 2(2), p 49–57

    Article  Google Scholar 

  9. G. Wei, Q. Jin, W.V. Giannobile, and P.X. Ma, The Enhancement of Osteogenesis by Nano-Fibrous Scaffolds Incorporating rhBMP-7 Nanospheres, Biomaterials, 2007, 28(12), p 2087–2096

    Article  CAS  Google Scholar 

  10. N. Sugiyama, H. Xu, T. Onoki, Y. Hoshikawa, T. Watanabe, N. Matsushita, X. Wang, F. Qin, M. Fukuhara, M. Tsukamoto, N. Abe, Y. Komizo, A. Inoue, and M. Yoshimura, Bioactive Titanate Nanomesh Layer on the Ti-Based Bulk Metallic Glass by Hydrothermal-Electrochemical Technique, Acta Biomater., 2009, 5(4), p 1367–1373

    Article  CAS  Google Scholar 

  11. C.X. Wang, M. Wang, and X. Zhou, Electrochemical Impedance Spectroscopy Study of the Nucleation and Growth of Apatite on Chemically Treated Titanium, Langmuir, 2002, 18, p 7641–7647

    Article  CAS  Google Scholar 

  12. V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernıkova, L. Szatmary, M. Klementova, and V. Balek, Sodium Titanate Nanorods: Preparation, Microstructure Characterization and Photocatalytic Activity, Appl. Catal. B, 2006, 63, p 20–30

    Article  CAS  Google Scholar 

  13. H. Zhang, X.P. Gao, G.R. Li, T.Y. Yan, and H.Y. Zhu, Electrochemical Lithium Storage of Sodium Titanate Nanotubes and Nanorods, Electrochim. Acta, 2008, 53, p 7061–7068

    Article  CAS  Google Scholar 

  14. A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, and C. Tang, Hydrothermal Treatment Duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons, J. Phys. Chem. C, 2007, 111, p 14353–14357

    Article  CAS  Google Scholar 

  15. R.A. Zarate, S. Fuentes, A.L. Cabrera, and V.M. Fuenzalida, Structural Characterization of Single Crystals of Sodium Titanate Nanowires Prepared by Hydrothermal Process, J. Cryst. Growth, 2008, 310, p 3630–3637

    Article  CAS  Google Scholar 

  16. H. Yu, J. Yu, B. Cheng, and M. Zhou, Effects of Hydrothermal Post-Treatment on Microstructures and Morphology of Titanate Nanoribbons, J. Solid State Electron., 2006, 179, p 349–354

    CAS  Google Scholar 

  17. H.-K. Seoa, G.-S. Kima, S.G. Ansaria, Y.-S. Kima, H.-S. Shina, K.-H. Shimb, and E.-K. Suhb, A Study on the Structure/Phase Transformation of Titanate Nanotubes Synthesized at Various Hydrothermal Temperatures, Sol Energy Mater Sol C, 2008, 92, p 1533–1539

    Article  Google Scholar 

  18. X-d Menga, D-z Wang, J-h Liu, and S-y Zhang, Preparation and Characterization of Sodium Titanate Nanowires from Brookite Nanocrystallites, Mater. Res. Bull., 2004, 39, p 2163–2170

    Article  Google Scholar 

  19. H. Zhang, H. Zhao, P. Liu, S. Zhang, and G. Li, Direct Growth of Hierarchically Structured Titanate Nanotube Filtration Membrane for Removal of Waterborne Pathogens, J. Membr. Sci., 2009, 343, p 212–218

    Article  CAS  Google Scholar 

  20. M. Ravelingien, S. Mullens, J. Luyten, V. Meynen, E. Vinck, C. Vervaet, and J.P. Remon, Thermal Decomposition of Bioactive Sodium Titanate Surfaces, Appl. Surf. Sci., 2009, 255, p 9539–9542

    Article  CAS  Google Scholar 

  21. Y. Guo, N.-H. Lee, H.-J. Oh, C.-R. Yoon, K.-S. Park, S.-C. Jung, and S.-J. Kim, The Growth of Oriented Titanate Nanotube Thin Film on Titanium Metal Flake, Surf. Coat. Technol., 2008, 202, p 5431–5435

    Article  CAS  Google Scholar 

  22. S. Wu, X. Liu, T. Hu, P.K. Chu, J.P.Y. Ho, Y.L. Chan, K.W.K. Yeung, C.L. Chu, T.F. Hung, K.F. Huo, C.Y. Chung, W.W. Lu, K.M.C. Cheung, and K.D.K. Luk, A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals, Nano Lett., 2008, 8(11), p 3803–3808

    Article  CAS  Google Scholar 

  23. W.Z. Zhong and S.K. Hua, Morphology of Crystal Growth, Science Press, Beijing, 1999

    Google Scholar 

  24. Y. Zhang, T. Qi, and Y. Zhang, A Novel Preparation of Titanium Dioxide from Titanium Slag, Hydrometallurgy, 2009, 96, p 52–56

    Article  CAS  Google Scholar 

  25. D.L. Morgan, H.-Y. Zhu, R.L. Frost, and E.R. Waclawik, Determination of a Morphological Phase Diagram of Titania/Titanate Nanostructures from Alkaline Hydrothermal Treatment of Degussa P25, Chem. Mater., 2008, 20, p 3800–3802

    Article  CAS  Google Scholar 

  26. W. Li, E. Shi, W. Zhong, and Z. Yin, Growth Mechanism and Growth Habit of Oxide Crystals, J. Cryst. Growth, 1999, 203, p 186–196

    Article  CAS  Google Scholar 

  27. C. Xia, E. Shi, W. Zhong, and J. Guo, Hydrothermal Synthesis of BaTiO3 Nano/Microcrystals, J. Cryst. Growth, 1996, 166, p 961–966

    Article  CAS  Google Scholar 

  28. Y. Zheng, E. Shi, W. Li, Z. Chen, W. Zhong, and X. Hu, The Formation of Titania Polymorphs Under Hydrothermal Condition, Sci. China E, 2002, 45, p 120–129

    Article  CAS  Google Scholar 

  29. Y.W.L. Lim, Y. Tang, Y.H. Cheng, and Z. Chen, Morphology, Crystal Structure and Adsorption Performance of Hydrothermally Synthesized Titania and Titanate Nanostructures. Nanoscale. doi: 10.1039/c0nr00440e

  30. C. Zhang, X. Jiang, B. Tian, X. Wang, X. Zhang, and Z. Du, Modification and Assembly of Titanate Sodium Nanotubes, Colloids Surf. A, 2005, 257–258, p 521–524

    Article  Google Scholar 

  31. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, p 988–994

    Article  CAS  Google Scholar 

  32. M. Miyauchi and H. Tokudome, Low-Reflective and Super-Hydrophilic Properties of Titanate or Titania Nanotube Thin Films via Layer-by-Layer Assembly, Thin Solid Films, 2006, 515, p 2091–2096

    Article  CAS  Google Scholar 

  33. N.A. Patankar, On the Modeling of Hydrophobic Contact Angles on Rough Surfaces, Langmuir, 2003, 19, p 1249–1253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, X., Chu, C.L., Chung, C.Y. et al. Hydrothermal Growth Mechanism of Controllable Hydrophilic Titanate Nanostructures on Medical NiTi Shape Memory Alloy. J. of Materi Eng and Perform 21, 2600–2606 (2012). https://doi.org/10.1007/s11665-012-0267-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0267-3

Keywords

Navigation