Journal of Materials Engineering and Performance

, Volume 21, Issue 11, pp 2429–2437 | Cite as

The role of Metal-Matrix Composite development During Friction Stir Welding of Aluminum to Brass in Weld Characteristics

  • H. R. Zareie RajaniEmail author
  • A. Esmaeili
  • M. Mohammadi
  • M. Sharbati
  • M. K. B. Givi


The present research aims to investigate the development of brass reinforced aluminum composites during dissimilar friction stir welding of brass and aluminum. Moreover, to probe the effect of such a metal matrix composite on its bed, the cross-sectional properties of joint area are studied in two aspects of corrosion behavior and hardness distribution. Microstructural investigations through optical and electron microscopy show development of lamellar composites within the top site of the stir zone and aluminum surface. The measured iso-hardness contours indicate that evolved composite structures increase the cross-sectional hardness of aluminum locally. Also, the electrochemical assessment of joint area suggests that Al/Br composite structure plays an accelerative role in deterioration of cross-sectional corrosion resistance of aluminum through obstructing passivation and forming microgalvanic cells, where cathodic brass reinforcements intensify the corrosion of anodic aluminum matrix.


aluminum corrosion testing metal matrix composites welding 


  1. 1.
    M.D. Fuller, S. Swaminathan, A.P. Zhilayev, and T.R. McNelley, Microstructural Transformations and Mechanical Properties of Cast NiAl Bronze: Effects of Fusion Welding and Friction Stir Processing, Mater. Sci. Eng. A, 2007, 463, p 128–137CrossRefGoogle Scholar
  2. 2.
    H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54, p 1199–1209CrossRefGoogle Scholar
  3. 3.
    Z.W. Chen, T. Pasang, and Y. Qi, Shear Flow and Formation of Nugget Zone During Friction Stir Welding of Aluminum Alloy 5083-O, Mater. Sci. Eng. A, 2008, 474, p 312–316CrossRefGoogle Scholar
  4. 4.
    Y. Yan, D. Zhang, C. Qiu, and W. Zhang, Dissimilar Friction Stir Welding Between 5052 Aluminum Alloy and AZ31 Magnesium Alloy, Trans. Nonferrous Met. Soc., 2010, 20, p s619–s623CrossRefGoogle Scholar
  5. 5.
    K.N. Krishnan, On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 2002, 327, p 246–251CrossRefGoogle Scholar
  6. 6.
    A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, and A. Echeverria, Material Flow and Mechanical Behaviour of Dissimilar AA2024-T3 and AA7075-T6 Aluminium Alloys Friction Stir Welds, Mater. Des., 2011, 32, p 2021–2027CrossRefGoogle Scholar
  7. 7.
    K. Kumar and S. Kailas, The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374CrossRefGoogle Scholar
  8. 8.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRefGoogle Scholar
  9. 9.
    A. Esmaeili, M.K. Besharati Givi, and H.R. Zareie Rajani, A Metallurgical and Mechanical Study on Dissimilar Friction Stir Welding of Aluminum 1050 to Brass (CuZn30), Mater. Sci. Eng. A, 2011, 528, p 7093–7102CrossRefGoogle Scholar
  10. 10.
    A. Esmaeili, H.R. Zareie Rajani, M. Sharbati, M.K. Besharati Givi, and M. Shamanian, The Role of Rotation Speed on Intermetallic Compounds Formation and Mechanical Behavior of Friction Stir Welded Brass/Aluminum 1050 Couple, J. Intermet., 2011, 19, p 1711–1719CrossRefGoogle Scholar
  11. 11.
    M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams, and D.A. Price, The Effect of Welding Parameters on the Corrosion Behaviour of Friction Stir Welded AA2024-T351, Corros. Sci., 2007, 49, p 877–909CrossRefGoogle Scholar
  12. 12.
    C.S. Paglia and R.G. Buchheit, A Look in the Corrosion of Aluminum Alloy Friction Stir Welds, Scripta Mater., 2008, 58, p 383–387CrossRefGoogle Scholar
  13. 13.
    R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, and A.J. Davenport, Microstructure, Mechanical Properties, and Corrosion of Friction Stir Welded Al 5456, Mater. Sci. Eng. A, 2009, 519, p 1–8CrossRefGoogle Scholar
  14. 14.
    J. Kang, R. Fu, G. Luan, C. Dong, and M. He, In-Situ Investigation on the Pitting Corrosion Behavior of Friction Stir Welded Joint of AA2024-T3 Aluminium Alloy, Corros. Sci., 2010, 52, p 620–626CrossRefGoogle Scholar
  15. 15.
    D.A. Wadeson, X. Zhou, G.E. Thompson, P. Skeldon, L. Djapic Oosterkamp, and G. Scamans, Corrosion Behaviour of Friction Stir Welded AA7108 T79 Aluminium Alloy, Corros. Sci., 2006, 48, p 887–897CrossRefGoogle Scholar
  16. 16.
    C. Liu, D.L. Chen, S. Bhole, X. Cao, and M. Jahazi, Polishing-Assisted Galvanic Corrosion in the Dissimilar Friction Stir Welded Joint of AZ31 Magnesium Alloy to 2024 Aluminum Alloy, Mater. Charact., 2009, 60, p 370–376CrossRefGoogle Scholar
  17. 17.
    Standard ASTM G5 1994Google Scholar
  18. 18.
    G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, Boston, 1986Google Scholar
  19. 19.
    J. Cai, S. Shekhar, J. Wang, and M. Ravi Shankar, Nanotwinned Microstructures from Low SFE Brass by HRSPD, Scripta Mater., 2009, 60, p 599–602CrossRefGoogle Scholar
  20. 20.
    M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986Google Scholar
  21. 21.
    R. Baboian, Corrosion Tests and Standards, Application and Interpretation, 2nd ed., ASTM International, West Conshohocken, 2005CrossRefGoogle Scholar
  22. 22.
    D. Lewis, D.O. Northwood, and C.E. Pearce, A Study of the Effects of Microstrain on the Electrode Potential and the Anodic Dissolution of Cu, Corros. Sci., 1969, 9, p 779–787CrossRefGoogle Scholar
  23. 23.
    S. Tiwari, R. Balasubramaniam, and M. Gupta, Corrosion Behavior of SiC Reinforced Magnesium Composites, Corros. Sci., 2007, 49, p 711–725CrossRefGoogle Scholar
  24. 24.
    N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corros. Sci., 2010, 52, p 1551–1553CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • H. R. Zareie Rajani
    • 1
    Email author
  • A. Esmaeili
    • 2
  • M. Mohammadi
    • 3
  • M. Sharbati
    • 4
  • M. K. B. Givi
    • 2
  1. 1.School of EngineeringThe University of British ColumbiaKelownaCanada
  2. 2.School of Mechanical Engineering, University College of EngineeringUniversity of TehranTehranIran
  3. 3.School of Materials Science and EngineeringSharif University of TechnologyTehranIran
  4. 4.School of Materials Science and Engineering, University College of EngineeringUniversity of TehranTehranIran

Personalised recommendations