Skip to main content

Advertisement

Log in

Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ti and its alloys are widely used in manufacturing orthopedic implants as prostheses for joint replacement because of their high corrosion resistance and excellent biocompatibility. However, they lack in bone-bonding ability and leads to higher rate of osteolysis and subsequent loosening of implants. In order to enhance the bone-bonding ability of these alloys, various surface-modification techniques are generally employed. The present investigation is mainly concerned with the surface modification of Cp-Ti and Ti-5Al-2Nb-1Ta alloy using a mixture of alkali and hydrogen peroxide followed by subsequent heat treatment to produce a porous gel layer with anatase structure, which enhances osseointegration. The morphological behavior was examined by x-ray diffractometer (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX). The in vitro characterization of all the specimens was evaluated by immersing the specimens in simulated body fluid solution to assess the apatite formation over the metal surface. The apatite formation was confirmed by XRD, SEM-EDX, and Fourier transform infrared spectroscopy (FT-IR). Further, the electrochemical corrosion behaviors of both the untreated and treated specimens were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that the surface-modified and heat-treated specimens exhibited higher corrosion resistance and excellent biocompatibility when compared to the chemical and untreated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Sitting, M. Textor, N.D. Spencer, M. Wieland, and P.H. Vallotton, Surface Characterization, J. Mater. Sci. Mater. Med., 1999, 10, p 35–46

    Article  Google Scholar 

  2. M. Niinomi, D. Kuroda, K. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A. Suzuki, Corrosion Wear Fracture of New Beta Type Biomedical Ti Alloys, Mater. Sci. Eng. A, 1999, 263, p 193–199

    Article  Google Scholar 

  3. Y. Okazaki, Effect of Friction on Anodic Polarization Properties of Metallic Biomaterials, Biomaterials, 2002, 23, p 2071–2077

    Article  CAS  Google Scholar 

  4. M.A. Khan, R.L. Williams, and D.F. Williams, Conjoint Corrosion and Wear in Ti Alloys, Biomaterials, 1999, 20, p 765–772

    Article  CAS  Google Scholar 

  5. M.A. Khan, R.L. Williams, and D.F. Williams, In Vitro Corrosion and Wear in Ti Alloys in Biological Environments, Biomaterials, 1996, 17, p 2117–2126

    Article  CAS  Google Scholar 

  6. M.A. Khan, R.L. Williams, and D.F. Williams, The Corrosion Behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in Protein Solutions, Biomaterials, 1999, 20, p 631–637

    Article  CAS  Google Scholar 

  7. M.F. Semlitsch, H. Weber, R.M. Streicher, and R. Schon, Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti-6Al-7Nb Alloy, Biomaterials, 1992, 13, p 781–788

    Article  CAS  Google Scholar 

  8. K. Wang, The Use of Ti for Medical Applications in the USA, Mater. Sci. Eng. A, 1996, 213, p 134–137

    Article  Google Scholar 

  9. M. Niinomi, Mechanical Properties of Biomedical Ti Alloys, Mater. Sci. Eng. A, 1998, 243, p 231–236

    Article  Google Scholar 

  10. R.G. Vardiman and R.A. Kent, Improvement of Fatigue Life of Ti-6Al-4V by Ion Implantation, J. Appl. Phys., 1982, 53, p 690–694

    Article  CAS  Google Scholar 

  11. J. Hongbing, L. Xia, M. Xinxin, and Y. Sun, Tribological Performance of Ti-6Al-4V Plasma Based Ion Implanted with Nitrogen, Wear, 2000, 246, p 40–45

    Article  Google Scholar 

  12. K.T. Rie and Th. Lampe, Proceedings of the International Conference on Surface Modification of Metals by Ion Beams, Mater. Sci. Eng., 1985, 69, p 473–481

    Article  CAS  Google Scholar 

  13. C. Ohtsuki, H. Iida, S. Hayakawa, and A. Osaka, Bioactivity of Ti Treated with Hydrogen Peroxide Solutions Containing Metal Chlorides, J. Biomed. Mater. Res., 1997, 35, p 39–47

    Article  CAS  Google Scholar 

  14. H.B. Wen, J.G. Wolke, J.R. Wijn, Q. Liu, F.Z. Cui, and K. de Groot, Fast Precipitation of Calcium Phosphate Layers on Ti Induced by Simple Chemical Treatments, Biomaterials, 1997, 18, p 1471–1478

    Article  CAS  Google Scholar 

  15. T. Kokubo, F. Miyaji, and H.M. Kim, Spontaneous Formation of Bone Like Apatite Layer on Chemically Treated Ti Metals, J. Am. Ceram. Soc., 1996, 4, p 1127–1129

    Article  Google Scholar 

  16. Y. Sasikumar, M. Karthega, and N. Rajendran, In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2011, 20, p 1271–1277

    Article  CAS  Google Scholar 

  17. S. Tamilselvi and N. Rajendran, In Vitro Corrosion Behavior of Ti-5Al-2Nb-1Ta Alloy in Hanks Solution, Mater. Corros., 2007, 58, p 285–289

    Article  CAS  Google Scholar 

  18. S. Tamilselvi, V. Raman, and N. Rajendran, Evaluation of Corrosion Behavior of Surface-Modified Ti-6Al-4V ELI, Alloy in Hanks Solution, J. Appl. Electrochem., 2010, 40(2), p 285–293

    Article  CAS  Google Scholar 

  19. S. Tamilselvi, V. Raman, and N. Rajendran, Surface Modification of Ti by Chemical and Thermal Methods—Electrochemical Impedance Spectroscopic Studies, Corros. Eng. Sci. Technol., 2010, doi:10.1179/147842209X12590591256936

  20. M. Karthega, S. Nagarajan, and N. Rajendran, In Vitro Studies of Hydrogen Peroxide Treated Ti for Biomedical Applications, Electrochim. Acta, 2010, 55, p 2201–2209

    Article  CAS  Google Scholar 

  21. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2005, 27, p 2907–2915

    Article  Google Scholar 

  22. Y. Zhou, Y.B. Wang, E.W. Zhang, Y. Cheng, X.L. Xiong, Y.F. Zheng, and S.C. Wei, Alkali Heat Treatment of a Low Modulus Biomedical Ti-27Nb Alloy, Biomed. Mater., 2009, 4, p 044108–044111

    Article  CAS  Google Scholar 

  23. J.-H. Yi, C. Bernard, F. Variola, S.F. Zalzal, J.D. Wuest, F. Rosei, and A. Nanci, Characterization of a Bioactive Nanotextured Surface Created by Controlled Chemical Oxidation of Titanium, Surf. Sci., 2006, 600, p 4613–4621

    Article  CAS  Google Scholar 

  24. N. Chosa, M. Taira, S. Saitoh, N. Sato, and Y. Araki, Characterization of Apatite Formed on Alkaline Heat-Treated Ti, J. Dent. Res., 2004, 83, p 465–469

    Article  CAS  Google Scholar 

  25. T. Lindgren, J.H. Muabora, E. Avendeno, J. Jonsson, A. Hoel, C.G. Granquist, and S.E. Lindquist, Photo Electrochemical and Optical Properties of Nitrogen Doped Ti Dioxide Films Prepared by Reactive DC Magnetron Sputtering, J. Phys. Chem. B, 2003, 107, p 5709–5716

    Article  CAS  Google Scholar 

  26. L.L. Hench, Medical Materials for the Next Millennium, Mater. Res. Soc., 1999, 24, p 13–19

    CAS  Google Scholar 

  27. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions Able to Reproduce In-Vivo Surface Structure Changes in Bioactive Glass-Ceramics, J. Biomed. Mater. Res., 1990, 24, p 721–734

    Article  CAS  Google Scholar 

  28. S. Koutsopoulos, Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods, J. Biomed. Mater. Res., 2002, 62, p 600–612

    Article  CAS  Google Scholar 

  29. F. Liang, L. Zhou, and K. Wang, Apatite Formation on Porous Ti by Alkali and Heat-Treatment, Surf. Coat. Technol., 2003, 165, p 133–139

    Article  CAS  Google Scholar 

  30. F. Liang, L. Zhou, and K. Wang, Enhancement of the Bioactivity of Alkali-Heat Treated Ti by Pre-Calcification, J. Mater. Sci. Lett., 2003, 22, p 1665–1669

    Article  CAS  Google Scholar 

  31. F.H. Lin, Y.S. Hsu, S.H. Lin, and T.M. Chen, The Growth of Hydroxyapatite on Alkaline Treated Ti-6Al-4V Soaking in Higher Temperature with Concentrated Ca2+/HPO4 2− Simulated Body Fluid, Mater. Chem. Phys., 2004, 87, p 24–30

    Article  CAS  Google Scholar 

  32. H. Takadama, H.M. Kim, T. Kokubo, and T. Nakamura, An X-Ray Photoelectron Spectroscopy Study of the Process of Apatite Formation on Bioactive Ti Metal, J. Biomed. Mater. Res., 2001, 55, p 185–193

    Article  CAS  Google Scholar 

  33. P. Shi, F. Geng, and F.T. Cheng, Preparation of Titania-Hydroxyapatite Coating on NiTi via a Low Temperature Route, Mater. Lett., 2006, 60, p 1996–1999

    Article  CAS  Google Scholar 

  34. S. Assis, S. Wolynee, and I. Costa, Corrosion Characterization of Ti Alloys by Electrochemical Techniques, Electrochim. Acta, 2006, 51, p 1815–1819

    Article  Google Scholar 

  35. A.W.E. Hodgson, Y. Mueller, D. Forster, and S. Virtanen, Electrochim. Acta, 2002, 47, p 1913–1923

    Article  CAS  Google Scholar 

  36. A.K. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behaviour of Cp-Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2005, 48, p 1696–1720

    Article  Google Scholar 

  37. J.E.G. Gonzalez and J.C. Mirza Rosca, Study of the Corrosion Behavior of Ti and Its Alloys for Biomedical and Dental Implant Applications, J. Electroanal. Chem., 1999, 471, p 109–115

    Article  CAS  Google Scholar 

  38. C.X. Wang, M. Wang, and X. Zhou, Electrochemical Impedance Spectroscopy Study of the Nucleation and Growth of Apatite on Chemically Treated Ti, Langmuir, 2002, 18, p 7641–7647

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, Y. Sasikumar, acknowledges the financial support received from the Council of Scientific and Industrial Research (CSIR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasikumar, Y., Rajendran, N. Surface Modification and In Vitro Characterization of Cp-Ti and Ti-5Al-2Nb-1Ta Alloy in Simulated Body Fluid. J. of Materi Eng and Perform 21, 2177–2187 (2012). https://doi.org/10.1007/s11665-012-0143-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0143-1

Keywords

Navigation