Skip to main content
Log in

Numerical Investigation into Effective Elastic Constants of MHS/EP Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The metallic hollow sphere (MHS) periodically filled in epoxy is a type of syntactic metallic hollow sphere structure (MHS/EP). In this article, the effective elastic constants of MHS/EP composite with three kinds of packing types of MHS are numerically investigated by ANSYS. The unit cell is used to simplify MHS periodically filled composite, and the effective elastic moduli and Poisson’s ratios are analyzed. It is found that the composite for simple cubic packing type can be considered as orthogonal isotropic material. However, the composites for the other two kinds of packing types should be considered as orthotropic materials in most instances, but they can be considered as orthogonal isotropic materials in relation to their linear-elastic behavior when the shell is medium-thickness wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997

    Google Scholar 

  2. T.J. Lu, D.P. He, C.Q. Chen, C.Y. Zhao, D.N. Fang, and X.L. Wang, The Multi-Functionality of Ultra-Light Porous Metals and Their Applications, Adv. Mech., 2006, 36(4), p 517–535

    Google Scholar 

  3. W.S. Sanders and L.J. Gibson, Mechanics of BCC and FCC Hollow-Sphere Foams, Mater. Sci. Eng. A, 2003, 352(1–2), p 150–161

    Google Scholar 

  4. T.J. Lim, B. Smith, and D.L. Mcdowell, Behavior of a Random Hollow Sphere Metal Foam, Acta Mater., 2002, 50(11), p 2867–2879

    Article  CAS  Google Scholar 

  5. S. Gasser, F. Paun, A. Cayzeele, and Y. Brechet, Uniaxial Tensile Elastic Properties of a Regular Stacking of Brazed Hollow Spheres, Scripta Mater., 2003, 48(12), p 1617–1623

    Article  CAS  Google Scholar 

  6. S. Gasser, F. Paun, and Y. Bréchet, Finite Elements Computation for the Elastic Properties of a Regular Stacking of Hollow Spheres, Mater. Sci. Eng. A, 2004, 379(1–2), p 240–244

    Google Scholar 

  7. T. Fiedler and A. Öchsner, On the Anisotropy of Adhesively Bonded Metallic Hollow Sphere Structures, Scripta Mater., 2008, 58(8), p 695–698

    Article  CAS  Google Scholar 

  8. T. Fiedler, E. Solórzano, and A. Öchsner, Numerical and Experimental Analysis of the Thermal Conductivity of Metallic Hollow Sphere Structures, Mater. Lett., 2008, 62(8–9), p 1204–1207

    Article  CAS  Google Scholar 

  9. T. Fiedler, R. Löffler, T. Bernthaler, R. Winkler, and A. Öchsner, Numerical Analyses of the Thermal Conductivity of Random Hollow Sphere Structures, Mater. Lett., 2009, 63(13–14), p 1125–1127

    Article  CAS  Google Scholar 

  10. E. Solórzano, M.A. Rodríguez-Perez, and J.A. de Saja, Thermal Conductivity of Metallic Hollow Sphere Structures: An Experimental, Analytical and Comparative Study, Mater. Lett., 2009, 63(13–14), p 1128–1130

    Article  Google Scholar 

  11. F. Feyel and V. Marcadon, Modelling of the Compression Behaviour of Metallic Hollow-Sphere Structures: About the Influence of Their Architecture and Their Constitutive Material’s Equations, Comput. Mater. Sci., 2009, 47(2), p 599–610

    Article  Google Scholar 

  12. P. Lhuissier, A. Fallet, L. Salvo, and Y. Brechet, Quasistatic Mechanical Behaviour of Stainless Steel Hollow Sphere Foam: Macroscopic Properties and Damage Mechanisms Followed by X-Ray Tomography, Mater. Lett., 2009, 63(13–14), p 1113–1116

    Article  CAS  Google Scholar 

  13. O. Friedl, C. Motz, H. Peterlik, S. Puchegger, H. Reger, and R. Pippan, Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures, Metall. Mater. Trans. B, 2008, 39, p 135–146

    Article  Google Scholar 

  14. H.H. Ruan, Z.Y. Gao, and T.X. Yu, Crushing of Thin-Walled Spheres and Sphere Arrays, Int. J. Mech. Sci., 2006, 48(2), p 117–133

    Article  Google Scholar 

  15. D. Karagiozova, T.X. Yu, and Z.Y. Gao, Modelling of MHS Cellular Solid in Large Strains, Int. J. Mech. Sci., 2006, 48(11), p 1273–1286

    Article  Google Scholar 

  16. Z.Y. Gao, T.X. Yu, and D. Karagiozova, Finite Element Simulations on the Mechanical Properties of MHS Materials, Acta Mech. Sin., 2007, 23(1), p 65–75

    Article  Google Scholar 

  17. X.L. Dong, Z.Y. Gao, and T.X. Yu, Dynamic Crushing of Thin-Walled Spheres: An Experimental Study, Int. J. Impact Eng., 2008, 35(8), p 717–726

    Article  Google Scholar 

  18. A. Tasdemirci, C. Ergonenc, and M. Guden, Split Hopkinson Pressure Bar Multiple Reloading and Modeling of a 316 L Stainless Steel Metallic Hollow Sphere Structure, Int. J. Impact Eng., 2010, 37(3), p 250–259

    Article  Google Scholar 

  19. C. Motz, O. Friedl, and R. Pippan, Fatigue Crack Propagation in Cellular Metals, Int. J. Fatigue, 2005, 27(10–12), p 1571–1581

    Article  CAS  Google Scholar 

  20. O. Caty, E. Maire, T. Douillard, P. Bertino, R. Dejaeger, and R. Bouchet, Experimental Determination of the Macroscopic Fatigue Properties of Metal Hollow Sphere Structures, Mater. Lett., 2009, 63(13–14), p 1131–1134

    Article  CAS  Google Scholar 

  21. C. Augustin and W. Hungerbach, Production of Hollow Spheres (HS) and Hollow Sphere Structures (HSS), Mater. Lett., 2009, 63, p 1109–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by the Hebei Natural Science Foundation (E2011203230) and the Hebei Institution of Higher Education scientific research plan (2010166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Xin, M., Liang, X. et al. Numerical Investigation into Effective Elastic Constants of MHS/EP Composite. J. of Materi Eng and Perform 21, 2038–2043 (2012). https://doi.org/10.1007/s11665-012-0137-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0137-z

Keywords

Navigation