Skip to main content
Log in

Simulation of Aluminum Powder in Tube Compaction Using Equal Channel Angular Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum powder in tube compaction with a 25 mm front plug through equal channel angular extrusion (ECAE) at room temperature was modeled using the finite element analysis package ABAQUS. The Gurson model was used in modeling this process. 2-D simulations in a 90° angle die showed better consolidation of powder near the inner edge of the die than the outer edge after one pass of ECAE but almost full densification occurs after two passes. The effect of hydrostatic pressure on densification of the powder was investigated by using two plugs varying in length dimension. The results obtained from the simulations were also compared with experiments conducted to compact aluminum powder with mean particle diameter of 45 μm. Optical microscopy, microhardness test, and density measurements confirmed the simulations. The simulations were extended to powder compaction in a 60° and 120° angle die. It was found that one pass of ECAE is sufficient to consolidate the aluminum powder completely and uniformly in a 60° angle die, whereas the material is still porous in a 120° angle die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197, p 157–164

    Article  Google Scholar 

  2. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, An Investigation of Microstructural Evolution During Equal-Channel Angular Pressing, Acta Mater., 1997, 45, p 4733–4741

    Article  CAS  Google Scholar 

  3. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Factors Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Additions to Aluminum, Metall. Mater. Trans. A, 1998, 29, p 2503–2512

    Article  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials From Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–110

    Article  CAS  Google Scholar 

  5. V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271, p 322–333

    Article  Google Scholar 

  6. V.M. Segal, Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE), Mater. Sci. Eng. A, 2004, 386, p 269–276

    Google Scholar 

  7. Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A, 2000, 291, p 46–53

    Article  Google Scholar 

  8. R. Srinivasan, Computer Simulation of the Equal Channel Angular Extrusion (ECAE) Process, Scr. Mater., 2001, 44, p 91–96

    Article  CAS  Google Scholar 

  9. T. Suo, Y. Li, Y. Guo, and Y. Liu, The Simulation of Deformation Distribution During ECAP Using 3D Finite Element Method, Mater. Sci. Eng. A, 2006, 432, p 269–274

    Article  Google Scholar 

  10. I. Balasundar, M. Sudhakara Rao, and T. Raghu, Equal Channel Angular Pressing Die to Extrude a Variety of Materials, Mater. Des., 2009, 30, p 1050–1059

    Article  CAS  Google Scholar 

  11. S. Xu, G. Zhao, G. Ren, and X. Ma, Numerical Simulation and Experimental Investigation of Pure Copper Deformation Behavior for Equal Channel Angular Pressing/Extrusion Process, Comput. Mater. Sci., 2008, 44, p 247–252

    Article  CAS  Google Scholar 

  12. A.V. Nagasekhar and Y. Tick-Hon, Optimal Tool Angles for Equal Channel Angular Extrusion of Strain Hardening Materials by Finite Element Analysis, Comput. Mater. Sci., 2004, 30, p 489–495

    Article  Google Scholar 

  13. P. Leo, E. Cerri, P.P. De Marco, and H.J. Roven, Properties and Deformation Behaviour of Severe Plastic Deformed Aluminum Alloys, J. Mater. Process. Technol., 2007, 182, p 207–214

    Article  CAS  Google Scholar 

  14. A.V. Nagasekhar, Y. Tick-Hon, and H.P. Seow, Deformation Behavior and Strain Homogeneity in Equal Channel Angular Extrusion/Pressing, J. Mater. Process. Technol., 2007, 192–193, p 449–452

    Article  Google Scholar 

  15. B.S. Moon, H.S. Kim, and S.I. Hong, Plastic Flow and Deformation Homogeneity of 6061 Al During Equal Channel Angular Pressing, Scr. Mater., 2002, 46, p 131–136

    Article  CAS  Google Scholar 

  16. C.J. Luis Perez, P. Gonzales, and Y. Garces, Channel Angular Extrusion in a Commercial Al-Mn Alloy, J. Mater. Process. Technol., 2003, 143–144, p 506–511

    Article  Google Scholar 

  17. G.M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang, P.K. Liaw, C. Xu, and T.G. Langdon, An Analysis of the Shear Zone for Metals Deformed by Equal-Channel Angular Processing, Mater. Sci. Eng. A, 2005, 410–411, p 239–242

    Google Scholar 

  18. S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, and B. Clausen, Finite Element Analysis of the Plastic Deformation Zone and Working Load in Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2004, 382, p 217–236

    Article  Google Scholar 

  19. J.Y. Suh, H.S. Kim, J.W. Park, and J.Y. Chang, Finite Element Analysis of Material Flow in Equal Channel Angular Pressing, Scr. Mater., 2001, 44, p 677–681

    Article  CAS  Google Scholar 

  20. S.J. Oh and S.B. Kang, Analysis of the Billet Deformation During Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2003, 343, p 107–115

    Article  Google Scholar 

  21. S.W. Chung, H. Somekawa, T. Kinoshita, W.J. Kim, and K. Higashi, The Non-Uniform Behavior During ECAE Process by 3-D FVM Simulation, Scr. Mater., 2004, 50, p 1079–1083

    Article  CAS  Google Scholar 

  22. O.N. Senkov, S.V. Senkova, J.M. Scott, and D.B. Miracle, Compaction of Amorphous Aluminum Alloy Powder by Direct Extrusion and Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2005, 393, p 12–21

    Article  Google Scholar 

  23. A.V. Nagasekhar, Y. Tick-Hon, R.K. Guduru, and K.S. Ramakanth, Multipass Equal Channel Angular Extrusion of MgB2 Powder in Tubes, Physica C, 2007, 466, p 174–180

    Article  CAS  Google Scholar 

  24. P. Quang, Y.G. Jeong, S.H. Hong, and H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key. Eng. Mater., 2006, 326–328, p 325–328

    Google Scholar 

  25. I. Karaman, M. Haouaoui, and H.J. Maier, Nanoparticle Consolidation Using Equal Channel Angular Extrusion at Room Temperature, J. Mater. Sci., 2007, 42, p 1561–1576

    Article  CAS  Google Scholar 

  26. K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, and K. Yokoe, Microstructural Characteristics and Superplastic-Like Behavior in Aluminum Powder Alloy Consolidated by Equal-Channel Angular, Acta Mater., 2000, 48, p 2625–2632

    Article  CAS  Google Scholar 

  27. J. Robertson, J.T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson, Consolidation of Amorphous Copper Based Powder by Equal Channel Angular Extrusion, J. Non-Cryst. Solids, 2003, 317, p 144–151

    Article  CAS  Google Scholar 

  28. A.T. Procopioa and A. Zavaliangos, Simulation of Multi-Axial Compaction of Granular Media from Loose to High Relative Densities, J. Mech. Phys. Solids, 2005, 53, p 1523–1551

    Article  Google Scholar 

  29. W. Wu, G. Jiang, R.H. Wagoner, and G.S. Daehn, Experimental and Numerical Investigation of Idealized Consolidation Part 1: Static Compaction, Acta Mater., 2000, 48, p 4323–4330

    Article  CAS  Google Scholar 

  30. L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, and B.C. Hancock, A Modified Drucker-Prager Cap Model for Die Compaction Simulation of Pharmaceutical Powders, Int. J. Solid. Struct., 2008, 45, p 3088–3106

    Article  Google Scholar 

  31. H.S. Kim, M.H. Seo, C.-S. Oh, and S.-J. Kim, Equal Channel Angular Pressing of Metallic Powders, Mater. Sci. Forum, 2003, 437–438, p 89–92

    Article  Google Scholar 

  32. S.C. Yoon and H.S. Kim, Equal Channel Angular Pressing of Metallic Powders for Nanostructured Materials, Mater. Sci. Forum, 2006, 503–504, p 221–226

    Article  Google Scholar 

  33. S.C. Yoon, S.-J. Hong, S.I. Hong, and H.S. Kim, Mechanical Properties of Equal Channel Angular Pressed Powder Extrudates of Rapidly Solidified Hypereutectic Al-20 wt% Si Alloy, Mater. Sci. Eng. A, 2007, 449–451, p 966–970

    Google Scholar 

  34. S.C. Lee, S.Y. Ha, K.T. Kim, S.M. Hwang, L.M. Huh, and H.S. Chung, Finite Element Analysis for Deformation Behavior of an Aluminum Alloy Composite Containing SiC Particles and Porosities During ECAP, Mater. Sci. Eng. A, 2004, 371, p 306–312

    Article  Google Scholar 

  35. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Materials, J. Eng. Mater. Technol., 1977, 99, p 2–15

    Article  Google Scholar 

  36. Abaqus Inc, Abaqus Users Manual, Version 6.8-1, 2008

  37. D.P. Delo and R.H. Piehler, Early Stage Consolidation Mechanisms During Hot Isostatic Pressing of Ti-6Al-4V Powder Compacts, Acta Mater., 1999, 47, p 2841–2852

    Article  CAS  Google Scholar 

  38. K.T. Kim and M.M. Carroll, Compaction Equations for Strain Hardening Porous Materials, Int. J. Plast., 1987, 3, p 63–73

    Article  CAS  Google Scholar 

  39. A.V. Nagasekhar, S.C. Yoon, Y. Tick-Hon, and H.S. Kim, An Experimental Verification of the Finite Element Modelling of Equal Channel Angular Pressing, Comput. Mater. Sci., 2009, 46, p 347–351

    Article  CAS  Google Scholar 

  40. M. Furukawa, Z. Horita, and T.G. Langdon, Processing by Equal Channel Angular Pressing: Applications to Grain Boundary Engineering, J. Mater. Sci., 2005, 40, p 909–917

    Article  CAS  Google Scholar 

  41. H.S. Kim, M.H. Seo, and S.I. Hong, On the Die Corner Gap Formation in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2000, 291, p 86–90

    Article  Google Scholar 

  42. A.V. Nagasekhar, Y. Tick-Hon, S. Li, and H.P. Seow, Effect of Acute Tool Angles on Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2005, 410–411, p 269–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Jenabali Jahromi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, R.D., Jahromi, A.J. & Jahromi, B.E. Simulation of Aluminum Powder in Tube Compaction Using Equal Channel Angular Extrusion. J. of Materi Eng and Perform 21, 143–152 (2012). https://doi.org/10.1007/s11665-011-9896-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9896-1

Keywords

Navigation