Journal of Materials Engineering and Performance

, Volume 21, Issue 2, pp 143–152 | Cite as

Simulation of Aluminum Powder in Tube Compaction Using Equal Channel Angular Extrusion

  • Reza Derakhshandeh Haghighi
  • Ahmad Jenabali JahromiEmail author
  • Behnam Esfandiar Jahromi


Aluminum powder in tube compaction with a 25 mm front plug through equal channel angular extrusion (ECAE) at room temperature was modeled using the finite element analysis package ABAQUS. The Gurson model was used in modeling this process. 2-D simulations in a 90° angle die showed better consolidation of powder near the inner edge of the die than the outer edge after one pass of ECAE but almost full densification occurs after two passes. The effect of hydrostatic pressure on densification of the powder was investigated by using two plugs varying in length dimension. The results obtained from the simulations were also compared with experiments conducted to compact aluminum powder with mean particle diameter of 45 μm. Optical microscopy, microhardness test, and density measurements confirmed the simulations. The simulations were extended to powder compaction in a 60° and 120° angle die. It was found that one pass of ECAE is sufficient to consolidate the aluminum powder completely and uniformly in a 60° angle die, whereas the material is still porous in a 120° angle die.


equal channel angular extrusion finite element modeling hydrostatic pressure powder compaction 


  1. 1.
    V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197, p 157–164CrossRefGoogle Scholar
  2. 2.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, An Investigation of Microstructural Evolution During Equal-Channel Angular Pressing, Acta Mater., 1997, 45, p 4733–4741CrossRefGoogle Scholar
  3. 3.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Factors Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Additions to Aluminum, Metall. Mater. Trans. A, 1998, 29, p 2503–2512CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials From Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–110CrossRefGoogle Scholar
  5. 5.
    V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271, p 322–333CrossRefGoogle Scholar
  6. 6.
    V.M. Segal, Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE), Mater. Sci. Eng. A, 2004, 386, p 269–276Google Scholar
  7. 7.
    Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A, 2000, 291, p 46–53CrossRefGoogle Scholar
  8. 8.
    R. Srinivasan, Computer Simulation of the Equal Channel Angular Extrusion (ECAE) Process, Scr. Mater., 2001, 44, p 91–96CrossRefGoogle Scholar
  9. 9.
    T. Suo, Y. Li, Y. Guo, and Y. Liu, The Simulation of Deformation Distribution During ECAP Using 3D Finite Element Method, Mater. Sci. Eng. A, 2006, 432, p 269–274CrossRefGoogle Scholar
  10. 10.
    I. Balasundar, M. Sudhakara Rao, and T. Raghu, Equal Channel Angular Pressing Die to Extrude a Variety of Materials, Mater. Des., 2009, 30, p 1050–1059CrossRefGoogle Scholar
  11. 11.
    S. Xu, G. Zhao, G. Ren, and X. Ma, Numerical Simulation and Experimental Investigation of Pure Copper Deformation Behavior for Equal Channel Angular Pressing/Extrusion Process, Comput. Mater. Sci., 2008, 44, p 247–252CrossRefGoogle Scholar
  12. 12.
    A.V. Nagasekhar and Y. Tick-Hon, Optimal Tool Angles for Equal Channel Angular Extrusion of Strain Hardening Materials by Finite Element Analysis, Comput. Mater. Sci., 2004, 30, p 489–495CrossRefGoogle Scholar
  13. 13.
    P. Leo, E. Cerri, P.P. De Marco, and H.J. Roven, Properties and Deformation Behaviour of Severe Plastic Deformed Aluminum Alloys, J. Mater. Process. Technol., 2007, 182, p 207–214CrossRefGoogle Scholar
  14. 14.
    A.V. Nagasekhar, Y. Tick-Hon, and H.P. Seow, Deformation Behavior and Strain Homogeneity in Equal Channel Angular Extrusion/Pressing, J. Mater. Process. Technol., 2007, 192–193, p 449–452CrossRefGoogle Scholar
  15. 15.
    B.S. Moon, H.S. Kim, and S.I. Hong, Plastic Flow and Deformation Homogeneity of 6061 Al During Equal Channel Angular Pressing, Scr. Mater., 2002, 46, p 131–136CrossRefGoogle Scholar
  16. 16.
    C.J. Luis Perez, P. Gonzales, and Y. Garces, Channel Angular Extrusion in a Commercial Al-Mn Alloy, J. Mater. Process. Technol., 2003, 143–144, p 506–511CrossRefGoogle Scholar
  17. 17.
    G.M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang, P.K. Liaw, C. Xu, and T.G. Langdon, An Analysis of the Shear Zone for Metals Deformed by Equal-Channel Angular Processing, Mater. Sci. Eng. A, 2005, 410–411, p 239–242Google Scholar
  18. 18.
    S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, and B. Clausen, Finite Element Analysis of the Plastic Deformation Zone and Working Load in Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2004, 382, p 217–236CrossRefGoogle Scholar
  19. 19.
    J.Y. Suh, H.S. Kim, J.W. Park, and J.Y. Chang, Finite Element Analysis of Material Flow in Equal Channel Angular Pressing, Scr. Mater., 2001, 44, p 677–681CrossRefGoogle Scholar
  20. 20.
    S.J. Oh and S.B. Kang, Analysis of the Billet Deformation During Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2003, 343, p 107–115CrossRefGoogle Scholar
  21. 21.
    S.W. Chung, H. Somekawa, T. Kinoshita, W.J. Kim, and K. Higashi, The Non-Uniform Behavior During ECAE Process by 3-D FVM Simulation, Scr. Mater., 2004, 50, p 1079–1083CrossRefGoogle Scholar
  22. 22.
    O.N. Senkov, S.V. Senkova, J.M. Scott, and D.B. Miracle, Compaction of Amorphous Aluminum Alloy Powder by Direct Extrusion and Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2005, 393, p 12–21CrossRefGoogle Scholar
  23. 23.
    A.V. Nagasekhar, Y. Tick-Hon, R.K. Guduru, and K.S. Ramakanth, Multipass Equal Channel Angular Extrusion of MgB2 Powder in Tubes, Physica C, 2007, 466, p 174–180CrossRefGoogle Scholar
  24. 24.
    P. Quang, Y.G. Jeong, S.H. Hong, and H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key. Eng. Mater., 2006, 326–328, p 325–328Google Scholar
  25. 25.
    I. Karaman, M. Haouaoui, and H.J. Maier, Nanoparticle Consolidation Using Equal Channel Angular Extrusion at Room Temperature, J. Mater. Sci., 2007, 42, p 1561–1576CrossRefGoogle Scholar
  26. 26.
    K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, and K. Yokoe, Microstructural Characteristics and Superplastic-Like Behavior in Aluminum Powder Alloy Consolidated by Equal-Channel Angular, Acta Mater., 2000, 48, p 2625–2632CrossRefGoogle Scholar
  27. 27.
    J. Robertson, J.T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson, Consolidation of Amorphous Copper Based Powder by Equal Channel Angular Extrusion, J. Non-Cryst. Solids, 2003, 317, p 144–151CrossRefGoogle Scholar
  28. 28.
    A.T. Procopioa and A. Zavaliangos, Simulation of Multi-Axial Compaction of Granular Media from Loose to High Relative Densities, J. Mech. Phys. Solids, 2005, 53, p 1523–1551CrossRefGoogle Scholar
  29. 29.
    W. Wu, G. Jiang, R.H. Wagoner, and G.S. Daehn, Experimental and Numerical Investigation of Idealized Consolidation Part 1: Static Compaction, Acta Mater., 2000, 48, p 4323–4330CrossRefGoogle Scholar
  30. 30.
    L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, and B.C. Hancock, A Modified Drucker-Prager Cap Model for Die Compaction Simulation of Pharmaceutical Powders, Int. J. Solid. Struct., 2008, 45, p 3088–3106CrossRefGoogle Scholar
  31. 31.
    H.S. Kim, M.H. Seo, C.-S. Oh, and S.-J. Kim, Equal Channel Angular Pressing of Metallic Powders, Mater. Sci. Forum, 2003, 437–438, p 89–92CrossRefGoogle Scholar
  32. 32.
    S.C. Yoon and H.S. Kim, Equal Channel Angular Pressing of Metallic Powders for Nanostructured Materials, Mater. Sci. Forum, 2006, 503–504, p 221–226CrossRefGoogle Scholar
  33. 33.
    S.C. Yoon, S.-J. Hong, S.I. Hong, and H.S. Kim, Mechanical Properties of Equal Channel Angular Pressed Powder Extrudates of Rapidly Solidified Hypereutectic Al-20 wt% Si Alloy, Mater. Sci. Eng. A, 2007, 449–451, p 966–970Google Scholar
  34. 34.
    S.C. Lee, S.Y. Ha, K.T. Kim, S.M. Hwang, L.M. Huh, and H.S. Chung, Finite Element Analysis for Deformation Behavior of an Aluminum Alloy Composite Containing SiC Particles and Porosities During ECAP, Mater. Sci. Eng. A, 2004, 371, p 306–312CrossRefGoogle Scholar
  35. 35.
    A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Materials, J. Eng. Mater. Technol., 1977, 99, p 2–15CrossRefGoogle Scholar
  36. 36.
    Abaqus Inc, Abaqus Users Manual, Version 6.8-1, 2008Google Scholar
  37. 37.
    D.P. Delo and R.H. Piehler, Early Stage Consolidation Mechanisms During Hot Isostatic Pressing of Ti-6Al-4V Powder Compacts, Acta Mater., 1999, 47, p 2841–2852CrossRefGoogle Scholar
  38. 38.
    K.T. Kim and M.M. Carroll, Compaction Equations for Strain Hardening Porous Materials, Int. J. Plast., 1987, 3, p 63–73CrossRefGoogle Scholar
  39. 39.
    A.V. Nagasekhar, S.C. Yoon, Y. Tick-Hon, and H.S. Kim, An Experimental Verification of the Finite Element Modelling of Equal Channel Angular Pressing, Comput. Mater. Sci., 2009, 46, p 347–351CrossRefGoogle Scholar
  40. 40.
    M. Furukawa, Z. Horita, and T.G. Langdon, Processing by Equal Channel Angular Pressing: Applications to Grain Boundary Engineering, J. Mater. Sci., 2005, 40, p 909–917CrossRefGoogle Scholar
  41. 41.
    H.S. Kim, M.H. Seo, and S.I. Hong, On the Die Corner Gap Formation in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2000, 291, p 86–90CrossRefGoogle Scholar
  42. 42.
    A.V. Nagasekhar, Y. Tick-Hon, S. Li, and H.P. Seow, Effect of Acute Tool Angles on Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2005, 410–411, p 269–272Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Reza Derakhshandeh Haghighi
    • 1
  • Ahmad Jenabali Jahromi
    • 1
    Email author
  • Behnam Esfandiar Jahromi
    • 2
  1. 1.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran
  2. 2.Department of Mechanical EngineeringPolitecnico di Milano UniversityMilanItaly

Personalised recommendations