Journal of Materials Engineering and Performance

, Volume 20, Issue 9, pp 1569–1574 | Cite as

Tensile Behavior of Ultrafine-Grained Al-4Zn-2Mg Alloy Produced by Cryorolling

  • K. Gopala Krishna
  • Nidhi Singh
  • K. Venkateswarlu
  • K. C. Hari Kumar


An Al-4Zn-2Mg alloy was subjected to cryorolling (CR) followed by short annealing. An average grain size of ~100 nm was achieved. Cryorolled samples showed large reduction in grain size due to suppression of dynamic recovery and absence of annihilation of dislocations, as compared to room temperature rolled samples. Further, the ultrafine-grained (UFG) Al-4Zn-2Mg alloy when subjected to natural aging showed an improved strength of ~413 MPa with ductility of ~25%, as compared to ~360 MPa and 22% ductility in peak aged condition of coarse-grained alloy. However, UFG alloy in peak aging condition, exhibited a relatively strength (~375 MPa) and 24% ductility combinations than the natural aging condition. The latter is attributed to dynamic precipitation and stored energy. In the present study, it is demonstrated that simultaneous improvement in strength as well as ductility can be achieved for the Al-4Zn-2Mg alloy through CR and controlled heat treatment combinations.


aging Al-4Zn-2Mg alloy cryorolling secondary precipitation tensile behavior ultrafine-grain structure 


  1. 1.
    Z.Y. Liu, G.X. Liang, E.D. Wang, and Z.R. Wang, The Effect of Cumulative Large Plastic Strain on the Structure and Properties of a Cu-Zn Alloy, Mater. Sci. Eng. A, 1998, 242, p 137–140CrossRefGoogle Scholar
  2. 2.
    B. Mingler, H.P. Karnthaler, M. Zehetbauer, and R.Z. Valiev, TEM Investigation of Multidirectionally Deformed Copper, Mater. Sci. Eng. A, 2001, 319–321, p 242–245Google Scholar
  3. 3.
    C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Severe Plastic Deformation as a Processing Tool to Develop Superplastic Metals, J. Alloys Compd., 2004, 378, p 27–34CrossRefGoogle Scholar
  4. 4.
    Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Equal Channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement Thermal Stability and Tensile Properties, Metall. Mater. Trans., 2000, A31, p 691–701CrossRefGoogle Scholar
  5. 5.
    S.J. Oh and S.B. Kang, Analysis of the Billet Deformation During Equal Channel Angular Pressing, Mater. Sci. Eng., 2003, A343, p 107–115Google Scholar
  6. 6.
    Y.Y. Wang, P.L. Sun, P.W. Kao, and C.P. Chang, Effect of Deformation Temperature on the Microstructure Developed in Commercial Purity Aluminum Processed by Equal Channel Angular Extrusion, Scr. Mater., 2004, 50, p 613–617CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47, p 579–583CrossRefGoogle Scholar
  8. 8.
    N. Tsuji, Y. Siato, H. Utsunomiya, and S. Tanigawa, Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1999, 40, p 795–800CrossRefGoogle Scholar
  9. 9.
    S.H. Lee, Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Role of Shear Strain in Ultra Grain Refinement by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 2002, 46, p 281–285CrossRefGoogle Scholar
  10. 10.
    K.T. Park, H.J. Kwon, W.J. Kim, and Y.S. Kim, Microstructural Characteristics and Thermal Stability of Ultrafine Grained 6061 Al Alloy Fabricated by Accumulative Roll Bonding Process, Mater. Sci. Eng., 2001, A316, p 145–152Google Scholar
  11. 11.
    J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49, p 1497–1505CrossRefGoogle Scholar
  12. 12.
    J.Y. Huang, Y.T. Zhu, J. David, and T.C. Lowe, Development of Repetitive Corrugation and Straightening, Mater. Sci. Eng., 2004, A371, p 35–39Google Scholar
  13. 13.
    Y.T. Zhu, H. Jiang, J.Y. Huang, and T.C. Lowe, A New Route to Bulk Nanostructured Metals, Metall. Mater. Trans., 2001, A32, p 1559–1562CrossRefGoogle Scholar
  14. 14.
    D.H. Shin, J.J. Park, Y.S. Kim, and K.T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng., 2002, A328, p 98–103Google Scholar
  15. 15.
    J.W. Lee and J.J. Park, Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement, Mater. Process. Technol., 2002, 130, p 208–213CrossRefGoogle Scholar
  16. 16.
    Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scr. Mater., 2004, 51, p 355–359CrossRefGoogle Scholar
  17. 17.
    T. Shanmugasundaram, B.S. Murty, and V. Subramanya Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scr. Mater., 2006, 54, p 2013–2017CrossRefGoogle Scholar
  18. 18.
    S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation, Acta Mater., 2007, 55, p 5822–5832CrossRefGoogle Scholar
  19. 19.
    D. Chu and J.W. Morris, Influence of Grain Structure and Solute Composition on the Work Hardening Behavior of Aluminium at Cryogenic Temperatures, LBL 34019 Lawrence Berkeley Laboratory and University of CaliforniaGoogle Scholar
  20. 20.
    P.N. Adler, R. Delasi, and G. Geschwind, Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, Metall. Trans., 1972, A3, p 3191–3200CrossRefGoogle Scholar
  21. 21.
    J.T. Staley, Aging Kinetics of Aluminum Alloy 7050, Metal. Trans., 1974, A5, p 929–932CrossRefGoogle Scholar
  22. 22.
    O.B. Lung, Y. Ji-Gang, and Y. Chen-Kuo, Effects of Step-Quench and Aging on Mechanical Properties and Resistance to Stress Corrosion Cracking of 7050 Aluminum Alloy, Mater. Trans. JIM, 2000, 41, p 783–789Google Scholar
  23. 23.
    Y.H. Zhao, X.Z. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52, p 4589–4599CrossRefGoogle Scholar
  24. 24.
    A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, D. Embury, L. Lesinq, and F. Livet, Low Temperature Dynamic Precipitation in a Supersaturated Al-Zn-Mg Alloy and Related Strain Hardening, Philos. Mag., 1999, A79, p 2485–2504Google Scholar
  25. 25.
    L.J. Zheng, C.Q. Chen, T.T. Zhou, P.Y. Liu, and M.G. Zeng, Structure and Properties of Ultrafine-Grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn Alloys Fabricated by ECA Pressing Combined With Thermal Treatment, Mater. Charact., 2002, 49, p 455–461CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • K. Gopala Krishna
    • 1
  • Nidhi Singh
    • 2
  • K. Venkateswarlu
    • 3
  • K. C. Hari Kumar
    • 4
  1. 1.National Metallurgical Laboratory (CSIR), Madras CentreChennaiIndia
  2. 2.National Physical Laboratory (CSIR)New DelhiIndia
  3. 3.National Aerospace Laboratory (CSIR)BangaloreIndia
  4. 4.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, MadrasChennaiIndia

Personalised recommendations