Skip to main content
Log in

Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A non-equilibrium molecular dynamics method is employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Specific attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at, or in the vicinity of, the shock front. The results obtained revealed that the shock loading causes a 2-4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si-O rings. These processes are associated with substantial energy absorption and dissipation and are believed to greatly influence the blast/ballistic impact mitigation potential of soda-lime glass. The present work was also aimed at the determination of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength (as quantified by the shock speed). The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Strassburger, P. Patel, W. McCauley, and D.W. Templeton, Visualization of Wave Propagation and Impact Damage in a Polycrystalline Transparent Ceramic-AlON, Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada

  2. AMPTIAC Quarterly, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quart., 2004, 8(4), p 2–5

  3. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492(1), p 397–411

    Google Scholar 

  4. M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18(8), p 1012–1028

    Article  CAS  Google Scholar 

  5. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401

    Article  Google Scholar 

  6. M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-pressure Induced Phase Transformations in Soda-lime Glass, J. Mater. Eng. Perform., 2010, 20(7), p 1144–1156

    Google Scholar 

  7. L.V. Woodcock, C.A. Angell, and P. Cheeseman, Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 1976, 65, p 1565–1577

    Article  CAS  Google Scholar 

  8. R.G.D. Valle and E. Venuti, High-Pressure Densification of Silica Glass: A Molecular-dynamics Simulation, Phys. Rev. B, 1996, 54(6), p 3809–3816

    Article  Google Scholar 

  9. K. Trachenko and M.T. Dove, Densification of Silica Glass Under Pressure, J. Phys.: Condens. Matter, 2002, 14, p 7449–7459

    Article  CAS  Google Scholar 

  10. Y. Liang, C.R. Miranda, and S. Scandolo, Mechanical Strength and Coordinate Defects in Compressed Silica Glass: Molecular Dynamics Simulations, Phys. Rev. B, 2007, 75, p 024205

    Article  Google Scholar 

  11. B. Nghiem, PhD thesis, University of Paris 6, France 1998

  12. C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: A Multi-scale Model, Eur. J. Mech. Solids A, 2002, 21, p 105–120

    Article  Google Scholar 

  13. M. Yazdchi, S. Valliappan, and W. Zhang, A Continuum Model for Dynamic Damage Evolution of Anisotropic Brittle Materials, Int. J. Numer. Methods Eng., 1996, 39, p 1555–1583

    Article  Google Scholar 

  14. F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the Probabilistic and Deterministic Transition Involved in a Fragmentation Process of Brittle Materials, Comput. Struct., 2003, 81, p 1241–1253

    Article  Google Scholar 

  15. T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain High-strain Rate, and High-pressure Applications, Int. J. Impact Eng., 2001, 25, p 211–231

    Article  Google Scholar 

  16. G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 20–22, 2899–2938

    Article  Google Scholar 

  17. B.L. Holian and G.K. Straub, Molecular Dynamics of Shock Waves in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions, Phys. Rev. Lett., 1979, 43, p 1598

    Article  CAS  Google Scholar 

  18. G.K. Straub, S.K. Schiferl, and D.C. Wallace, Thermodynamic Properties of Fluid Sodium from Molecular Dynamics, Phys. Rev. B, 1983, 28, p 312–316

    Article  CAS  Google Scholar 

  19. V. Y. Klimenko and A. N. Dremin, in Detonatsiya, Chernogolovka, O. N. Breusov et al., Eds., AkademiiNauk, Moscow, 1978, p 79

  20. B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shock-Wave Structure Via Non-equilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Phys. Rev. A, 1980, 22, p 2498

    Article  Google Scholar 

  21. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976, p 91–124

    Google Scholar 

  22. H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364

    Article  CAS  Google Scholar 

  23. H. Sun, P. Ren, and J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theoret. Polym. Sci., 1998, 8(1/2), p 229–246

    Article  CAS  Google Scholar 

  24. http://www.accelrys.com/mstudio/msmodeling/visualiser.html

  25. http://www.accelrys.com/mstudio/msmodeling/amorphouscell.html

  26. M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009

    Article  CAS  Google Scholar 

  27. http://www.accelrys.com/mstudio/msmodeling/discover.html

  28. D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules, 1986, 19, p 139–154

    Article  CAS  Google Scholar 

  29. A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Namet-Nasser, An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(36), p 5847–5866

    Article  CAS  Google Scholar 

  30. M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact Mitigation of Polyurea When Used as a Helmet Suspension-Pad Material, Mater. Des., 2010, 31(9), p 4050–4065

    Article  CAS  Google Scholar 

  31. M. Grujicic, W. C. Bell, B. Pandurangan and P. S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-wave Mitigation Efficiency of the Advanced Combat Helmet, J. Mater. Eng. Perform., in press, 2010

  32. C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Fused Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385

    Article  Google Scholar 

Download references

Acknowledgments

The material presented in this paper is based on work supported by the U.S. Army/Clemson University Cooperative Agreements W911NF-04-2-0024 and W911NF-06-2-0042 and by an ARC-TARDEC research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Bell, W.C., Pandurangan, B. et al. Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass. J. of Materi Eng and Perform 21, 1580–1590 (2012). https://doi.org/10.1007/s11665-011-0064-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0064-4

Keywords

Navigation