Skip to main content
Log in

Heat Strength Evaluation and Microstructures Observation of the Welded Joints of One China-Made T91 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

T91 (9Cr1MoVNb), the martensitic heat-resistant steel, is widely applied in industries like power generation, petrochemical, nuclear, etc., and a wealth of researches has been conducted on its properties so far. However, actually for China, T91 was begun to be domestically manufactured only from the end of last century. Hence, thorough assessments of the China-made T91 steels are always urgently required, especially for its welded joints. In this paper, the relationship between mechanical properties and microstructures of the welded joints of one China-made T91 steel was experimentally discussed. Moreover, aging test and creep rupture test were utilized for both analyzing the heat strength and predicting the service life of the joints. Results showed that welded joints of this China-made T91 steel could exhibit sufficient strength under the operating conditions of most nuclear reactors used nowadays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Klueh and A.T. Nelson, Ferritic/Martensitic Steels for Next-Generation Reactors, J. Nucl. Mater., 2007, 371, p 37–52

    Article  CAS  Google Scholar 

  2. J. Van den Bosch and A. Almazouzi, Compatibility of Martensitic/Austenitic Steel Welds with Liquid Lead Bismuth Eutectic Environment, J. Nucl. Mater., 2009, 385, p 504–509

    Article  Google Scholar 

  3. F. Masuyama, History of Power Plants and Progress in Heat Resistant Steels, ISIJ Int., 2001, 41, p 612–625

    Article  CAS  Google Scholar 

  4. R. Viswanathan and W. Bakker, Materials for Ultrasupercritical Coal Power Plants–Boiler Materials: Part 1, J. Mater. Eng. Perform., 2001, 10, p 81–95

    Article  CAS  Google Scholar 

  5. J. Hansen, M. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina-Elizade, Global Temperature Change, Proc. Natl. Acad. Sci. USA, 2006, 103, p 14288–14293

    Article  CAS  Google Scholar 

  6. Y. Gong and Z.G. Yang, Corrosion Evaluation of One Dry Desulfurization Equipment—Circulating Fluidized Bed Boiler, Mater. Des., 2011, 32, p 671–681

    Article  CAS  Google Scholar 

  7. J. Cao, Y. Gong, K. Zhu, Z.G. Yang et al., Microstructure and Mechanical Properties of Dissimilar Materials Joints Between T92 Martensitic and S304H Austenitic Steels, Mater. Des., 2011, 32, p 2763–2770

    Article  CAS  Google Scholar 

  8. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104

    Article  Google Scholar 

  9. J. Cao, Y. Gong, Z.G. Yang et al., Creep Fracture Behavior of Dissimilar Weld Joint Between T92 Martensitic and HR3C Austenitic Steels, Int. J. Pres. Ves. Pip., 2011, 88, p 94–98

    Article  CAS  Google Scholar 

  10. J.C. An, H.Y. Jing, G.C. Xiao, L. Zhao, and L.Y. Xu, Analysis of the Creep Behavior of P92 Steel Welded Joint, J. Mater. Eng. Perform., 2010, doi:10.1007/s11665-010-9779-x

  11. Y. Gong, J. Cao, L.N. Ji, Z.G. Yang et al., Assessment of Creep Rupture Properties for Dissimilar Steels Welded Joints Between T92 and HR3C, Fatigue Fract. Eng. M, 2011, 34, p 83–96

    Article  CAS  Google Scholar 

  12. A. Roy, P. Kumar, and D. Maitra, The Effect of Silicon Content on Impact Toughness of T91 Grade Steels, J. Mater. Eng. Perform., 2009, 18, p 205–210

    Article  CAS  Google Scholar 

  13. C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, and I. Guillot, Influence of the Temperature on the Tensile Behaviour of a Modified 9Cr–1Mo T91 Martensitic Steel, Mater. Sci. Eng. A, 2010, 527, p 6758–6764

    Article  Google Scholar 

  14. D. Laverde, T. Gómez-Acebo, and F. Castro, Continuous and Cyclic Oxidation of T91 Ferritic Steel Under Steam, Corros. Sci., 2004, 46, p 613–631

    Article  CAS  Google Scholar 

  15. L. Nieto Hierro, V. Rohr, P.J. Ennis, M. Schütze, and W.J. Quadakkers, Steam Oxidation and Its Potential Effects on Creep Strength of Power Station Materials, Mater. Corros., 2005, 56, p 890–896

    Article  Google Scholar 

  16. R. Viswanathan, J. Sarven, and J.M. Tanzosh, Boiler Materials for Ultra-Supercritical Coal Power Plants—Steamside Oxidation, J. Mater. Eng. Perform., 2006, 15, p 255–274

    Article  CAS  Google Scholar 

  17. J. Čadek, V. Šustek, and M. Pahutová, An Analysis of a Set of Creep Data for a 9Cr-1Mo-0.2V (P91 type) Steel, Mater. Sci. Eng. A, 1997, 225, p 22–28

    Article  Google Scholar 

  18. V. Sklenička, K. Kuchařová, M. Svoboda, L. Kloc, J. Buršík, and A. Kroupa, Long-Term Creep Behavior of 9–12%Cr Power Plant Steels, Mater. Charact., 2003, 51, p 35–48

    Article  Google Scholar 

  19. B. Fournier, M. Salvi, F. Dalle, Y. De Carlan, C. Caës et al., Lifetime Prediction of 9–12%Cr Martensitic Steels Subjected to Creep-Fatigue at High Temperature, Int. J. Fatigue, 2010, 32, p 971–978

    Article  CAS  Google Scholar 

  20. A. Kumar, K. Laha, T. Jayakumar, K. Bhanu Sankara Rao, and B. Raj, Comprehensive Microstructural Characterization in Modified 9Cr-1Mo Ferritic Steel by Ultrasonic Measurements, Metall. Mater. Trans. A, 2002, 33A, p 1617–1626

    Article  CAS  Google Scholar 

  21. V. Homolová, J. Janovec, P. Záhumenský, and A. Výrostková, Influence of Thermal-Deformation History on Evolution of Secondary Phases in P91 Steel, Mater. Sci. Eng. A, 2003, 349, p 306–312

    Article  Google Scholar 

  22. D.R.G. Mitchell and S. Sulaiman, Advanced TEM Specimen Preparation Methods for Replication of P91 Steel, Mater. Charact., 2006, 56, p 49–58

    Article  CAS  Google Scholar 

  23. A.K. Roy, D. Maitra, and P. Kumar, The Role of Silicon Content on Environmental Degradations of T91 Steels, J. Mater. Eng. Perform., 2008, 17, p 612–619

    Article  CAS  Google Scholar 

  24. Z. Jiao, N. Ham, and G.S. Was, Microstructure of Helium-Implanted and Proton-Irradiated T91 Ferritic/Martensitic Steel, J. Nucl. Mater., 2007, 367–370, p 440–445

  25. D.C. Foley, K.T. Hartwig, S.A. Maloy, P. Hosemann, and X. Zhang, Grain Refinement of T91 Alloy by Equal Channel Angular Pressing, J. Nucl. Mater., 2009, 389, p 221–224

    Article  CAS  Google Scholar 

  26. C.R. Das, S.K. Albert, A.K. Bhaduri, G. Srinivasan, and B.S. Murty, Effect of Prior Microstructure on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel Weld Joints, Mater. Sci. Eng. A, 2008, 477, p 185–192

    Article  Google Scholar 

  27. M. Sireesha, K. Shaju Albert, and S. Sundaresan, Microstructure and Mechanical Properties of Weld Fusion Zones in Modified 9Cr-1Mo Steel, J. Mater. Eng. Perform., 2001, 10, p 320–330

    Article  CAS  Google Scholar 

  28. A. Thomas, B. Pathiraj, and P. Veron, Feature Tests on Welded Components at Higher Temperatures—Material Performance and Residual Stress Evaluation, Eng. Fract. Mech., 2007, 74, p 969–979

    Article  Google Scholar 

  29. S. Spigarelli and E. Quadrini, Analysis of the Creep Behaviour of Modified P91 (9Cr-1Mo-NbV) Welds, Mater. Des., 2002, 23, p 547–552

    Article  CAS  Google Scholar 

  30. Y.K. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod.9Cr-1Mo Steel, Int. J. Pres. Ves. Pip., 2009, 86, p 585–592

    Article  CAS  Google Scholar 

  31. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Creep Damage Evaluation of 9Cr-1Mo-V-Nb Steel Welded Joints Showing Type IV Fracture, Int. J. Pres. Ves. Pip., 2006, 83, p 63–71

    Article  CAS  Google Scholar 

  32. F. Vivier, A.F. Gourgues-Lorenzon, and J. Besson, Creep Rupture of a 9Cr1MoNbV Steel at 500°C: Base Metal and Welded Joint, Nucl. Eng. Des., 2010, 240, p 2704–2709

    Article  CAS  Google Scholar 

  33. ASME SA-213M-2001, Seamless Stainless Steel Tubes for Boiler and Heat Exchanger, ASME, Washington, DC, 2001

    Google Scholar 

  34. ISO 4967-1998, Steel—Determination of Content of Nonmetallic Inclusions—Micrographic Method Using Standard Diagrams. ISO, Genève, Switzerland, 1998

  35. ASME SFA-5.28M-2007, Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding, ASME, Washington, DC, 2007

    Google Scholar 

  36. ASTM E8-04, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, 2004

    Google Scholar 

  37. ASTM E290-97a(2004), Standard Test Methods for Bend Testing of Material for Ductility, ASTM, West Conshohocken, 2004

  38. ISO 783-1999, Metallic Materials—Tensile Testing at Elevated Temperature, ISO, Genève, Switzerland, 1999

  39. ASTM E139-06, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, ASTM, West Conshohocken, 2006

  40. GB 5310-2008, Seamless Steel Tubes and Pipes for High Pressure Boiler, SAC, Beijing, 2008

    Google Scholar 

  41. Welding Consumables for P91 Steels for the Power Generation Industry, Metrode Products Ltd

  42. G.G. Shu, J.N. Liu, C.Z. Shi, Z.P. Wang, and Y.F. Zhao, Microstructural Properties and Engineering Applications of T/P91 Steel used in Supercritical Boilers, Shaanxi Science & Technology Press, Xi’an, Shaanxi Province, 2006

    Google Scholar 

  43. W. Ostwald, Lehrbuch der Allgemeinen Chemie, vol. 2, part 1, Leipzig, Germany, 1896

    Google Scholar 

  44. Z.F. Hu and Z.G. Yang, An Investigation of the Embrittlement in X20CrMoV12.1 Power Plant Steel after Long-Term Service Exposure at Elevated Temperature, Mater. Sci. Eng. A, 2004, 383, p 224–228

    Article  Google Scholar 

  45. Z.F. Hu and Z.G. Yang, Identification of the Precipitates by TEM and EDS in X20CrMoV12.1 after Long-Term Service at Elevated Temperature, J. Mater. Eng. Perform., 2003, 12, p 106–111

    Article  CAS  Google Scholar 

  46. F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–775

    Google Scholar 

  47. D. Jandová, J. Kasl, and V. Kanta, Creep Resistance of Similar and Dissimilar Weld Joints of P91 Steel, Mater. High. Temp., 2006, 23, p 165–170

    Article  Google Scholar 

  48. M.M. Abu-Khader, Recent Advances in Nuclear Power: A Review, Prog. Nucl. Energ., 2009, 51, p 225–235

    Article  Google Scholar 

  49. D.T. Ingersoll, Deliberately Small Reactors and the Second Nuclear Era, Prog. Nucl. Energ., 2009, 51, p 589–603

    Article  CAS  Google Scholar 

  50. M. Lenzen, Life Cycle Energy and Greenhouse Gas Emissions of Nuclear Energy: A Review, Energ. Convers. Manage., 2008, 49, p 2178–2199

    Article  CAS  Google Scholar 

  51. M. Piera, A. Lafuente, A. Abánades, and J.M. Martinez-Val, Hybrid Reactors: Nuclear Breeding or Energy Production?, Energ. Convers. Manage., 2010, 51, p 1758–1763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by both National Natural Science Foundation of China (Grant 50871076) and Shanghai Leading Academic Discipline Project (Project Number: B113). Meanwhile, part of the tests was cooperated by Shanghai Institute of Special Equipment Inspection & Technical Research and Shanghai Boiler works Ltd. Finally, gratitude must also be given to Shanghai Research Institute of Materials for providing various experimental conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Guo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Yang, ZG. & Yang, FY. Heat Strength Evaluation and Microstructures Observation of the Welded Joints of One China-Made T91 Steel. J. of Materi Eng and Perform 21, 1313–1319 (2012). https://doi.org/10.1007/s11665-011-0048-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0048-4

Keywords

Navigation