Skip to main content
Log in

Producing Ultrafine Grain Al6061 Alloy by Accumulative Back Extrusion Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Accumulative back extrusion (ABE) is a kind of severe plastic deformation process to refine the microstructure, resulting in significant improvement in mechanical properties. In the present study, AA6061-T6 alloy was subjected to a newly designed ABE process at room temperature. One cycle of ABE was employed to the workpiece. The microstructural evolution was then characterized using optical microscopy and transmission electron microscopy (TEM) techniques. The results show that after one cycle of ABE, significant grain refinement was achieved. This led to the formation of ultrafine grains of smaller than 1 μm. Besides, there was about a two-fold increase in the hardness, increasing from approximately 88 Hv to 155-160 Hv after only one cycle of ABE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189.

    Article  CAS  Google Scholar 

  2. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel UltraHigh Straining Process for Bulk Materials Development of the Accumulative Roll Bonding ARB, Acta Mater., 1999, 47, p 579–583.

    Article  CAS  Google Scholar 

  3. Y. Huang and P.B. Prangnell, Continuous Frictional Angular Extrusion and Its Application in the Production of Ultrafine-Grained Sheet Metals, Scr. Mater., 2007, 56, p 333–336.

    Article  CAS  Google Scholar 

  4. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling, Mater. Sci. Eng., 2003, A343, p 43–50.

    CAS  Google Scholar 

  5. P.K. Chaudhury, B. Cherukuri, and R. Srinivasan, Scaling Up of Equal Channel Angular Pressing (ECAP) and Its Effect on Mechanical Properties, Microstructure, and Hot Workability of AA 6061, Mater. Sci. Eng., 2005, A410–411, p 316–318.

    Google Scholar 

  6. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity and Grain Refinement During Equal-Channel Angular Pressing: A Model for Grain Refinement in ECAP, Mater. Sci. Eng., 2005, A398, p 66–76.

    CAS  Google Scholar 

  7. B.S. Moon, H.S. Kim, and S.I. Hong, Plastic Flow and Deformation Homogeneity of 6061 Al During Equal Channel Angular Pressing, Scr. Mater. A, 2002, 46, p 131–136.

    Article  CAS  Google Scholar 

  8. T. Inoue, S. Turizuka, and K. Nagai, Evaluating of Torsional Strain on Processing by High-Pressure Torsion, Mater. Sci. Technol., 2002, 18, p 1007–1010.

    Article  CAS  Google Scholar 

  9. S. Ferrasse, V.M. Segal, K.T. Hartwig, and R.E. Goforth, Development of a Submicrometer-Grained Microstructure in Aluminum 6061 Using Equal Channel Angular Extrusion, J. Mater. Res., 1997, 12, p 1253–1261.

    Article  CAS  Google Scholar 

  10. A. Loucifa, R.B. Figueiredob, T. Baudinc, F. Brissetc, and T.G. Langdon, Microstructural Evolution in an Al-6061 Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2010, 527, p 4864–4869.

    Google Scholar 

  11. G. Faraji and P. Asadi, Characterization of AZ91/Alumina Nanocomposite Produced by FSP, Mater. Sci. Eng. A, 2011, 528, p 2431–2440.

    Article  Google Scholar 

  12. G. Faraji, O. Dastani, and S.A.A. Akbari Mousavi, Effect of Process Parameters on Microstructure and Micro-hardness of AZ91/Al2O3 Surface Composite Produced by FSP, Mater. Eng. Perform. doi:10.1007/s11665-010-9812-0.

  13. J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, and W.J. Kim, Effect of Aging Treatment on Heavily Deformed Microstructure of a 6061 Aluminum Alloy After Equal Channel Angular Pressing, Scr. Mater., 2001, 45, p 901–907.

    Article  CAS  Google Scholar 

  14. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Improvement of Mechanical Properties for Al Alloys Using Equal-Channel Angular Pressing, J. Mater. Process. Technol., 2001, 117, p 288–292.

    Article  CAS  Google Scholar 

  15. Y.H. Kim and J.H. Park, Upper Bound Analysis of Torsional Backward Extrusion Process, Mater. Process. Technol., 2003, 143–144, p 735–740.

    Article  Google Scholar 

  16. C. Kennedy and L.E. Murr, Comparison of Tungsten Heavy-Alloy Rod Penetration into Ductile and Hard Metal Targets: Microstructural Analysis and Computer Simulations, Mater. Sci. Eng. A, 2002, 325, p 131–143.

    Article  Google Scholar 

  17. K. Dehghani, M. Salehi, M. Salehi, and H. Aboutalebi, Comparing the Melt-Spun Nanostructured Aluminum 6061 Foils with Conventional Direct Chill Ingot, Mater. Sci. Eng., 2008, A489, p 245–252.

    CAS  Google Scholar 

  18. M. Salehi and K. Dehghani, Structure and Properties of Nanostructured Aluminum A413.1 Produced by Melt Spinning Compared with Ingot Microstructure, J. Alloys Compd., 2008, 457, p 357–361.

    Article  CAS  Google Scholar 

  19. S.M. Fatemi-Varzaneh and A. Zarei-Hanzaki, Processing of AZ31 Magnesium Alloy by a New Noble Severe Plastic Deformation Method, Mater. Sci. Eng. A, 2009, 504, p 104–106.

    Article  Google Scholar 

  20. G. Faraji, M.M. Mashhadi, and H.S. Kim, Microstructure Inhomogeneity in Ultra-Fine Grained Bulk AZ91 Produced by Accumulative Back Extrusion (ABE), Mater. Sci. Eng. A, 2011, 528, p 4312–4317

    Google Scholar 

  21. G. Faraji, M.M. Mashhadi, and H.S. Kim, Microstructural Evolution of UFG Magnesium Alloy Produced by Accumulative Back Extrusion (ABE), Mater. Manuf. Proc., 2011, doi:10.1080/10426914.2011.577880

  22. A. Roostaei, A. Zarei-Hanzaki, M.H. Parsa, and S.M. Fatemi-Varzaneh, An Analysis to Plastic Deformation Behavior of AZ31 Alloys During Accumulative Roll Bonding Process, J. Mater. Sci., 2010, 45, p 4494–4500.

    Article  CAS  Google Scholar 

  23. A. Yazdipour, A. Shafiei, and K. Dehghani, Modeling the Microstructural Evolution and Effect of Cooling Rate on the Nanograins Formed During the Friction Stir Processing of Al508, Mater. Sci. Eng., 2009, 527, p 192–197.

    Article  Google Scholar 

  24. Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita, and T.G. Langdon, Influence of Crystal Orientation on ECAP of Aluminum Single Crystals, Mater. Sci. Eng. A, 2006, 420, p 79–86.

    Article  Google Scholar 

  25. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344.

    Article  CAS  Google Scholar 

  26. X. Huang, N. Kamikawa, and N. Hansen, Strengthening Mechanisms in Nanostructured Aluminum, Mater. Sci. Eng. A, 2008, 483–484, p 102–104.

    Google Scholar 

  27. M.R. Shankar et al., Microstructure and Stability of Nanocrystalline Aluminum 6061 Created by Large Strain Machining, Acta Mater., 2005, 53, p 4781–4793.

    Article  CAS  Google Scholar 

  28. M.M. Moshksar and R. Ebrahimi, A New Upper Bound Analysis for Prediction of Load and Flow Pattern in Backward Extrusion Forging, Iran. J. Sci. Technol. Trans. B, 1999, 23, p 251–253.

    CAS  Google Scholar 

  29. M.M. Moshksar and R. Ebrahimi, An Analytical Approach for Backward-Extrusion Forging of Regular Polygonal Hollow Components, Int. J. Mech. Sci., 1998, 40, p 1247–1263.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the research center of Tehran University for the financial support, and Dr. Hasan Jafarian for preparing the TEM samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alihosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alihosseini, H., Faraji, G. & Dehghani, K. Producing Ultrafine Grain Al6061 Alloy by Accumulative Back Extrusion Process. J. of Materi Eng and Perform 21, 1220–1225 (2012). https://doi.org/10.1007/s11665-011-0026-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0026-x

Keywords

Navigation