Skip to main content

Advertisement

Log in

The Estimation of Localized Corrosion Behavior of Ni-Based Dental Alloys Using Electrochemical Techniques

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the electrochemical behavior of the five non-precious Ni-based dental casting alloys in acidified artificial saliva. For comparison, nickel was also investigated. In order to study the localized corrosion resistance, the cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy were performed. Scanning electron microscopy (SEM) observations were made after the CCP tests. The Ni-Cr alloys with chromium (14-18%) contents were susceptible to localized corrosion. The Ni-Cr-Mo alloy with contents of chromium (≈13%) and molybdenum (9%) presents a dangerous breakdown, but have a zero corrosion potential so that the difference between them is around 650 mV. The Ni-Cr-Mo alloys with higher chromium (22-25%) and molybdenum (9-11%) contents had a much larger passive range in the polarization curve and were immune to pitting corrosion. Pitting resistance equivalent (PRE) of about ≈54 could provide the Ni-based alloy with a good pitting corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R. Davis, Handbook of Materials for Medical Devices, ASM International, Materials Park, OH, 2003

    Google Scholar 

  2. K.L. Wapner, Implications of Metallic Corrosion in Total Knee Arthroplasty, Clin. Orthop. Relat. Res., 1991, 271, p 12–20

    Google Scholar 

  3. M. Cortada, L.L. Giner, S. Costa, F.J. Gil, D. Rodrigez, and J.A. Planell, Galvanic Corrosion Behaviour of Titanium Implants Coupled to Dental Alloys, J. Mater. Sci. Mater. Med., 2005, 27, p 1728–1734

    Google Scholar 

  4. R. Venugopalan and L.C. Lucas, Evaluation of Restorative and Implant Alloys Galvanically Coupled to Titanium, Dent. Mater., 1998, 14, p 165–172

    Article  CAS  Google Scholar 

  5. C.M. Wylie, R.M. Shelton, G.J.P. Fleming, and A.J. Davenport, Corrosion of Nickel-Based Dental Casting Alloys, Dent. Mater., 2007, 23, p 714–723

    Article  CAS  Google Scholar 

  6. K.F. Leinfelder, An Evaluation of Casting Alloys Used for Restorative Procedures, J. Am. Dent. Assoc., 1997, 128, p 37–45

    CAS  Google Scholar 

  7. R.G. Craig and J.M. Powers, Restorative Dental Materials. 11th ed., Mosby Inc (an affiliate of Elsevier Science), 2002

  8. W.Z. Friend, Corrosion of Nickel and Nickel-Based Alloys, John Wiley and Sons, New York, 1980

    Google Scholar 

  9. J. Geis-Gerstorfer and E.H. Greener, Effect of Mo Content and pH Value on the Corrosion Behavior of Ni-20Cr-Mo Dental Alloys, Dtsch. Zahnarzt. Z., 1989, 44, p 863–866

    CAS  Google Scholar 

  10. M.A. Ameer, E. Khamis, and M. Al-Motlaq, Electrochemical Behaviour of Recasting Ni-Cr and Co-Cr Non-Precious Dental Alloys, Corros. Sci., 2004, 46, p 2825–2836

    Article  CAS  Google Scholar 

  11. D. Mareci, G. Ungureanu, N. Aelenei, and J.C. Mirza Rosca, Comparative Corrosion Study of Non-Precious Ni/Cr-Based Soft Alloys in View of Dental Applications, Environ. Eng. Manag. J., 2008, 7, p 41–49

    CAS  Google Scholar 

  12. M. Sharma, A.V. Ramesh Kumar, N. Singh, N. Adya, and B. Saluja, Electrochemical Corrosion Behaviour of Dental/Implant Alloys in Artificial Saliva, JMEP, 2008, 17, p 695–701

    Article  CAS  Google Scholar 

  13. V.S. Saji and H.C. Choe, Preferential Dissolution Behaviour in Ni-Cr Dental Cast Alloy, Bull. Mater. Sci., 2010, 33, p 463–468

    Article  CAS  Google Scholar 

  14. J.D. Bumgardner and L.C. Lucas, Cellular Response to Metallic Ions Released from Nickel-Chromium Dental Alloys, J. Dent. Res., 1995, 74, p 1521–1527

    Article  CAS  Google Scholar 

  15. J.D. Bumgardner, J. Doeller, and L.C. Lucas, Effect of Nickel-Based Dental Casting Alloys on Fibroblast Metabolism and Ultrastructural Organization, J. Biomed. Mater. Res., 1995, 29, p 611–617

    Article  CAS  Google Scholar 

  16. H.-Y. Lin, B. Bowers, J.T. Wolan, Z. Cai, and J.D. Bumgardner, Metallurgical, Surface, and Corrosion Analysis of Ni-Cr Dental Casting Alloys Before and After Porcelain Firing, Dent. Mater., 2008, 24, p 378–385

    Article  CAS  Google Scholar 

  17. J.C. Sectos, A. Babei-Mahani, L. Di Silvio, I.A. Mjor, and N.H.F. Wilson, The Safety of Nickel Containing Dental Alloys: A Review, Dent. Mater., 2006, 22, p 1163–1168

    Article  Google Scholar 

  18. R.I. Holland, Corrosion Testing by Potentiodynamic Polarization in Various Electrolytes, Dent. Mater., 1992, 8, p 241–245

    Article  CAS  Google Scholar 

  19. J.F. McCabe, Applied Dental Materials, 7th ed., Blackwell Science, Oxford, 1990

    Google Scholar 

  20. T. Fusayama, T. Katayori, and S. Nomoto, Corrosion of Gold and Amalgam Placed in Contact with Each Other, J. Dent. Res., 1963, 42, p 1183–1197

    Article  CAS  Google Scholar 

  21. G. Airoldi, G. Riva, M. Vanelli, V. Filippi, and G. Garattini, Oral Environment Temperature Changes Induced by Cold/Hot Liquid Intake, Am. J. Orthod. Dentofac. Orthop., 1997, 112, p 58–63

    Article  CAS  Google Scholar 

  22. D. Mareci, D. Sutiman, A. Cailean, and J.C. Mirza Rosca, Electrochemical Characterization of Some Dental Materials in Accelerated Environmental Testing, Environ. Eng. Manag. J., 2009, 8, p 397–407

    CAS  Google Scholar 

  23. A. Kawashima, K. Asami, and K. Hashimoto, XPS Study of Anodic Behavior of Amorphous Nickel-Phosphorus Alloys Containing Chromium, Molybdenum or Tungsten in 1 M HCl, Corros. Sci., 1984, 24, p 807–823

    Article  CAS  Google Scholar 

  24. B.E. Wilde and E. Williams, The Use of Current/Voltage Curves for the Study of Localized Corrosion and Passivity Breakdown on Stainless Steels in Chloride Media, Electrochim. Acta, 1971, 16, p 1971–1985

    Article  CAS  Google Scholar 

  25. J.R. Scully and R.G. Kelly, Methods for Determining Aqueous Corrosion Reaction Rates, ASM Handbook, Vol 13A, S.D. Cramer and B.S. Covino, Jr., Ed., ASM International, Materials Park, OH, 2003

    Google Scholar 

  26. G.S. Frankel, Pitting Corrosion, ASM Handbook, Vol 13A, S.D. Cramer and B.S. Covino, Jr., Ed., ASM International, Materials Park, OH, 2003

    Google Scholar 

  27. J.D. Bumgardner, M. Roach, T. Scheel, and S. Gardner, Corrosion and XPS Surface Evaluation of Nickel-Chromium Based Dental Casting Alloys, South Biomed. Eng. Conf. Proc., IEEE, 1998

  28. J.D. Bumgardner and L.C. Lucas, Surface Analysis of Nickel Chromium Dental Alloys, Dent. Mater., 1993, 9, p 252–259

    Article  CAS  Google Scholar 

  29. M. Roach, D. Parsell, S. Gardner, and J.D. Bumgardner, Correlation of Corrosion and Surface Analyses for Ni-Cr Alloys, Crit. Rev. Biomed. Eng., 1998, 26, p 391–392

    Google Scholar 

  30. H.H. Huang, Effect of Chemical Composition on the Corrosion Behaviour of Ni-Cr-Mo Dental Casting Alloys, J. Biomed. Mater. Res., 2002, 60, p 458–465

    Article  CAS  Google Scholar 

  31. T.J. Glover, Recent Developments in Corrosion-Resistant Metallic Alloys for Construction of Seawater Pumps, Mater. Perform., 1988, 27, p 51–56

    CAS  Google Scholar 

  32. G. Rondelli and B. Vicentini, Effect of Copper on the Localized Corrosion Resistance of Ni-Ti Shape Memory Alloy, Biomaterials, 2002, 23, p 639–644

    Article  CAS  Google Scholar 

  33. M. Meticos-Hukovic, Z. Pilic, R. Babic, and D. Omanovic, Influence of Alloying Elements on the Corrosion Stability of CoCrMo Implant Alloy in Hank’s Solution, Acta Biomater., 2006, 2, p 693–700

    Article  Google Scholar 

  34. T.P. Moffat and R.M. Latanision, An Electrochemical and X-ray Photoelectron Spectroscopy Study of the Passive State of Chromium, J. Electrochem. Soc., 1992, 139, p 1869–1879

    Article  CAS  Google Scholar 

  35. S. Haupt and H.H. Strehblow, Combined Electrochemical and Surface Analytical Investigations of the Formation of Passive Layers, Corros. Sci., 1989, 29, p 163–182

    Article  CAS  Google Scholar 

  36. E.B. Castro and J.R. Vilche, Investigation of Passive Layer on Iron and Iron-Chromium Alloys by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 1993, 38, p 1567–1572

    Article  CAS  Google Scholar 

  37. C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, Technical Report Number 004/83, Solartron Instruments, 1983

  38. F. Mansfeld, Simultaneous Determination of Instantaneous Corrosion Rates and Tafel Slopes from Polarization Resistance Measurements, J. Electrochem. Soc., 1973, 120, p 515–518

    Article  CAS  Google Scholar 

  39. S. Nagarajan, S. Tamilselvi, and N. Rajendran, Evaluation of Localised Corrosion Behaviour of Super Austenitic Stainless Steels Using Dynamic Electrochemical Impedance Spectroscopy, Mater. Corros., 2007, 58, p 33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This articles was supported by the project PERFORM-ERA “Postdoctoral Performance for Integration in the European Research Area” (ID-57649), financed by the European Social Fund and the Romanian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiana Bolat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareci, D., Chelariu, R., Iacoban, S. et al. The Estimation of Localized Corrosion Behavior of Ni-Based Dental Alloys Using Electrochemical Techniques. J. of Materi Eng and Perform 21, 1431–1439 (2012). https://doi.org/10.1007/s11665-011-0014-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0014-1

Keywords

Navigation