Skip to main content
Log in

Electrochemical Deposition of Ni on an Al-Cu Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Metallic coatings can be used to improve the wear and corrosion resistance of Al alloys. In this study, Ni was used as a candidate material for such a coating which was applied on the surface of Al 2014 alloy using electrodeposition in a standard Watt’s bath. A two-step heat treatment procedure was employed that served to increase the adhesion as well as hardness of Ni. Deposition was undertaken for different durations using both galvanostatic and potentiostatic techniques. The effect of deposition parameters such as surface finish, current, potential, temperature, pH level and duration on the microstructure, adhesion, and surface properties of the Ni deposit was studied. Materials characterization was performed using scanning electron microscopy, atomic force microscopy, and x-ray diffraction. Cross-sectional scanning transmission electron microscope images revealed the fine-grained (10 nm) structure of Ni initially deposited at the Ni-Al alloy substrate. Microhardness, adhesion, and corrosion behavior of the Ni deposit were evaluated. Experimental results indicate that deposition by galvanostatic technique on 1 μm surface finish at 45 °C with a pH level maintained at 3.6 represented the optimum conditions to generate a uniform Ni deposit on Al 2014. It was concluded that Ni deposition can be used to improve the surface properties of Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Hagans and C.M. Haas, Influence of Metallurgy on the Protective Mechanism of Chromium-Based Conversion Coatings on Aluminum-Copper Alloys, Surf. Interface Anal., 1994, 21, p 65–78

    Article  CAS  Google Scholar 

  2. A.K. Mishra and R. Balasubramaniam, Corrosion Inhibition of Aluminum Alloy 2014 by Rare Earth Chlorides, Corros. Sci., 2007, 49, p 1027–1044

    Article  CAS  Google Scholar 

  3. Y. Odani, Aluminium Alloys, Met. Powder Rep., 1994, 49, p 36–40

    Google Scholar 

  4. M.J. Ghazali, Wear Characteristic of Several Commercial Wrought Aluminium Alloys Against Tool Steel, J. Kejuru., 2006, 18, p 49–56

    Google Scholar 

  5. D. Pletcher and F.C. Walsh, Industrial Electrochemistry, 2nd ed., Chapman and Hall, London, 1990

    Google Scholar 

  6. J.K. Dennis and T.E. Such, Nickel and Chromium Plating, Butterworth, London, 1986

    Google Scholar 

  7. C.P. Steffani, J.W. Dini, J.R. Groza, and A. Palazoglu, Electrodeposition and Corrosion Resistance of Ni-W-B Coatings, J. Mater. Eng. Perform., 1997, 6/4, p 413–416

    Article  Google Scholar 

  8. F. Cai, X. Huang, Q. Yang, and D. Nagy, Effect of Microstructure on the Solid Particle Erosion Properties of Ni Plating, J. Mater. Eng. Perform., 2009, 18/3, p 305–311

    Article  Google Scholar 

  9. V.F.C. Lins, E.S. Cecconello, and T. Matencio, Effect of the Current Density on Morphology, Porosity, and Tribological Properties of Electrodeposited Nickel on Copper, J. Mater. Eng. Perform., 2008, 17/5, p 741–745

    Article  Google Scholar 

  10. U. Klement, L. Hollang, S.R. Dey, M. Battabyal, O.V. Mishin, and W. Skrotzki, Effect of Annealing on Microstructural Development and Grain Orientation in Electrodeposited Ni, Texture and Anisotropy of Polycrystals III, Solid State Phenomena Series, Vol 160, Trans Tech Publications Inc., Stafa-Zurich, Switzerland, 2010, p 235-240

  11. G.Z. Meng, F.L. Sun, Y.W. Shaoa, T. Zhang, F.H. Wang, C.F. Dong, and X.G. Li, Effect of Phytic Acid on the Microstructure and Corrosion Resistance of Ni Coating, Electrochim. Acta, 2010, 55/20, p 5990–5995

    Article  Google Scholar 

  12. M.M. Kamel, Z.M. Anwer, I.T. Abdel-Salam, and I.S. Ibrahim, Nickel Electrodeposition from Novel Lactate Bath, Trans. Inst. Met. Finish., 2010, 88(4), p 191–197

    Article  CAS  Google Scholar 

  13. A. Shibata, H. Noda, M. Sone, and Y. Higo, Microstructural Development of an Electrodeposited Ni Layer, Thin Solid Films, 2010, 518(18), p 5153–5158

    Article  CAS  Google Scholar 

  14. J.X. Kang, W.Z. Zhao, and G.F. Zhang, Influence of Electrodeposition Parameters on the Deposition Rate and Microhardness of Nanocrystalline Ni Coatings, Surf. Coat. Technol., 2009, 203(13), p 1815–1818

    Article  CAS  Google Scholar 

  15. A.M. El-Sherik, J. Shirokoff, and U. Erb, Stress Measurements in Nanocrystalline Ni Electrodeposits, J. Alloys Compd., 2005, 389, p 140–143

    Article  CAS  Google Scholar 

  16. M. Holm and T.J. O’Keefe, Evaluation of Nickel Deposition by Electrochemical Impedance Spectroscopy, J. Appl. Electrochem., 2000, 30, p 1125–1132

    Article  CAS  Google Scholar 

  17. A.M. El-Sherik, U. Erb, and J. Page, Microstructural Evolution in Pulse Plated Nickel Electrodeposits, Surf. Coat. Technol., 1996, 88, p 70–78

    Article  Google Scholar 

  18. E. Toth-Kadar, I. Bakonyi, L. Pogany, and A. Cziraki, Microstructure and Electrical Transport Properties of Pulsed-Plated Nanocrystalline Nickel Electrodeposits, Surf. Coat. Technol., 1997, 88, p 57–65

    Article  CAS  Google Scholar 

  19. I. Bakonyi, E. Toth-Kadar, L. Pogany, A. Cziraki, I. Gerocs, K. Varga-Josepovits, B. Arnold, and K. Wetzig, Preparation and Characterization of d.c.-Plated Nanocrystalline Nickel Electrodeposits, Surf. Coat. Technol., 1996, 78, p 124–136

    Article  CAS  Google Scholar 

  20. D.-T. Chin, Mass Transfer and Current-Potential Relation in Pulse Electrolysis, J. Electrochem. Soc., 1983, 130, p 1657–1667

    Article  CAS  Google Scholar 

  21. A. Cziraki, I. Gerocs, B. Fogarassy, E. Toth-Kadar, and I. Bakonyi, Microstructure and Growth of Electrodeposited Nanocrystalline Nickel Foils, J. Mater. Sci., 1994, 29, p 4771–4777

    Article  CAS  Google Scholar 

  22. Y. Xuetao, W. Yu, S. Dongbai, and Y. Hongying, Influence of Pulse Parameters on the Microstructure and Microhardness of Nickel Electrodeposits, Surf. Coat. Technol., 2008, 202, p 1895–1903

    Article  Google Scholar 

  23. J.M. Molina, R.A. Saravanan, J. Narciso, and E. Louis, Surface Modification of 2014 Aluminium Alloy–Al2O3 Particles Composites by Nickel Electrochemical Deposition, Mater. Sci. Eng., 2004, 383, p 299–306

    Article  Google Scholar 

  24. Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, and K. Shimizu, Chromate Conversion Coatings on Aluminium-Copper Alloys, Corros. Sci., 2005, 47, p 341–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of Center of Research Excellence in Corrosion (CoRE-C), Ministry of Higher Education and the Research Institute at the King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ul-Hamid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ul-Hamid, A., Quddus, A., Dafalla, H. et al. Electrochemical Deposition of Ni on an Al-Cu Alloy. J. of Materi Eng and Perform 21, 213–221 (2012). https://doi.org/10.1007/s11665-010-9816-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9816-9

Keywords

Navigation