Skip to main content

Advertisement

Log in

In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ti-15Mo (β-Ti) alloy was subjected to chemical followed by thermal treatment for the enhancement of in vitro bioactivity and corrosion resistance. The surface-modified specimens were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDAX). The results indicated the formation of nanoporous layer and flake-like structure developed during chemical and subsequent thermal treatments. The in vitro bioactivity of the surface-treated β-Ti alloy was evaluated by immersing in simulated body fluid (SBF) solution. The formation of apatite particles was confirmed using Fourier transform-infrared spectroscopy, SEM, and EDAX analyses. Moreover, the electrochemical behavior of surface-modified specimens in SBF solution was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that the surface-modified specimens exhibited higher potential value and lower current density when compared to untreated specimen. The EIS studies showed the formation of new layer, indicating the growth of apatite-like particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Leitao, R.A. Silva, and M.A. Barbosa, Electrochemical Impedance Spectroscopy of Nitrogen and Carbon Sputter Coated 316 L Stainless Steel, Corros. Sci., 1997, 39, p 333–338

    Article  CAS  Google Scholar 

  2. J. Pan, D. Thierry, and C. Leygraf, Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application, Electrochim. Acta, 1996, 41, p 1143–1153

    Article  CAS  Google Scholar 

  3. T. Kokubo, F. Miyaji, and H.M. Kim, Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals, J. Am. Ceram. Soc., 1996, 4, p 1127–1129

    Article  Google Scholar 

  4. H.M. Kim, Y. Sasaki, J. Suzuki, S. Fujibayashi, T. Kokubo, T. Matsushita, and T. Nakamura, Mechanical Properties of Bioactive Titanium Metal Prepared by Chemical Treatment, Key Eng. Mater., 2001, 192–195, p 227–230

    Article  Google Scholar 

  5. S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion Behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI, Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 52, p 839–846

    Article  CAS  Google Scholar 

  6. V. Raman, S. Tamilselvi, and N. Rajendran, Electrochemical Impedance Spectroscopic Characterization of Titanium During Alkali Treatment and Apatite Growth in Simulated Body Fluid, Electrochim. Acta, 2007, 52, p 7418–7424

    Article  CAS  Google Scholar 

  7. S. Tamilselvi, V. Raman, and N. Rajendran, Evaluation of Corrosion Behavior of Surface Modified Ti-6Al-4V ELI, Alloy in Hanks Solution, J. Appl. Electrochem., 2010, 40(2), p 285–293

    Article  CAS  Google Scholar 

  8. E. Czarnowska, T. Wierzchon, and M. Niedbala, Properties of the Surface Layers on Titanium Alloy and Their Biocompatibility in In-Vitro Tests, J. Mater. Process. Technol., 1999, 92–93, p 190–194

    Article  Google Scholar 

  9. D. Kuroda, M. Niinomi, M. Masahiko, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New Type Titanium Alloys for Implants Materials, J. Biomed. Mater. Res., 1995, 29, p 943–950

    Article  Google Scholar 

  10. N.T.C. Oliveria, G. Aleixo, R. Caram, and A.C. Guastaldi, Development of Ti–Mo Alloys for Biomedical Applications: Microstructure and Electrochemical Characterization, J. Mater. Sci. Eng. A, 2007, 452, p 727–731

    Article  Google Scholar 

  11. N.T.C. Oliveria and A.C. Guastaldi, Electrochemical Behavior of Ti–Mo Alloys Applied as Biomaterial, Corros. Sci., 2008, 50(4), p 938–945

    Article  Google Scholar 

  12. M. Karthega, V. Raman, and N. Rajendran, Influence of Potential on the Electrochemical Behaviour of β Titanium Alloys in Hank’s Solution, Acta Biomater., 2007, 3, p 1019–1023

    Article  CAS  Google Scholar 

  13. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2005, 27, p 2907–2915

    Article  Google Scholar 

  14. H.M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi, and T. Nakamura, Formation of a Bioactive Graded Surface Structure on Ti–15Mo–5Zr–3Al Alloy by Chemical Treatment, Biomaterials, 2000, 21, p 353–358

    Article  CAS  Google Scholar 

  15. F. Liang, L. Zhou, and K. Wang, Apatite Formation on Porous Titanium by Alkali And Heat-Treatment, Surf. Coat. Technol., 2003, 165, p 133–139

    Article  CAS  Google Scholar 

  16. F. Liang, L. Zhou, and K. Wang, Enhancement of the Bioactivity of Alkali-Heat Treated Titanium by Pre-Calcification, J. Mater. Sci. Lett., 2003, 22, p 1665–1669

    Article  CAS  Google Scholar 

  17. F.H. Lin, Y.S. Hsu, S.H. Lin, and T.M. Chen, The Growth of Hydroxyapatite on Alkaline Treated Ti–6Al–4V Soaking in Higher Temperature with Concentrated Ca2+/HPO42− simulated body fluid, Mater. Chem. Phys., 2004, 87, p 24–30

    Article  CAS  Google Scholar 

  18. H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura, Preparation of Bioactive Ti and its Alloys Via Simple Chemical Surface Treatment, J. Biomed. Mater. Res., 1996, 32, p 409–417

    Article  CAS  Google Scholar 

  19. C. Dianying, H.J. Eric, G. Maurice, and W. Mei, Apatite Formation on Alkaline-Treated Dense TiO2 Coatings Deposited Using the Solution Precursor Plasma Spray Process, Acta Biomater., 2008, 4, p 553–559

    Article  Google Scholar 

  20. M.M. Khaled, Potential Dependent Selective Dissolution of Ti–6Al–4V and Laser Treated Ti–6Al–4V in Acid/Chloride, J. Appl. Electrochem., 2003, 33, p 817–822

    Article  CAS  Google Scholar 

  21. A.K. Shukla, R. Balasubramaniam, and S. Bhargava, Properties of Passive Film Formed on CP-Titanium, Ti–6Al–4V and Ti–13.4Al–29Nb Alloys in Simulated Human Body Conditions, Intermetallics, 2005, 13, p 631–637

    Article  CAS  Google Scholar 

  22. S. Tamilselvi, V. Raman, and N. Rajendran, Surface Modification of Titanium by Chemical and Thermal Methods—Electrochemical Impedance Spectroscopic Studies, Corrosion Engineering Science and Technology, 2010. doi:10.1179/147842209X12590591256936

Download references

Acknowledgment

The authors acknowledge the Indian Council for Medical Research (ICMR), New Delhi for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasikumar, Y., Karthega, M. & Rajendran, N. In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications. J. of Materi Eng and Perform 20, 1271–1277 (2011). https://doi.org/10.1007/s11665-010-9772-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9772-4

Keywords

Navigation