Skip to main content
Log in

Carbon Transfer in Sodium System Under Thermal Cycling-Possibility of “Metal Dusting”

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High temperature sodium systems encounter thermal cycling during operation. Under this condition, the behavior of carbon dissolved in sodium needs special attention. Carbon chemistry of sodium is very complex because of the existence of multiple carbon-bearing species. In addition, carbon exists both in the dissolved (“active”) and undissolved (“inactive”) forms. Under thermal cycling conditions, as the temperature is lowered, carbon may precipitate as sodium acetylide. The equilibrium carbon activity imparted by this species is high enough to cause the precipitation of iron carbide (Fe3C) in ferrous alloys. The Fe3C may be destabilized at lower activities of carbon in the environment (when the temperature is increased) and may decompose to a fine dispersion of metal and graphite. This phenomenon of “metal dusting” is extremely detrimental to the components of sodium systems. The article analyses the possibility of “metal dusting” in an operating sodium system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. B.H. Kolster, J.V.D. Veer, and L. Bos, The Decomposition Behaviour of Fe, Cr, Ni, Co and Mn in Stainless Steel Sodium Loops, Materials Behaviour and Physical Chemistry in Liquid Metal Systems, H.U. Borgstedt, Ed., Plenum, New York, 1982, p 37–48

    Google Scholar 

  2. M.G. Barker and D.J. Wood, The Corrosion of Chromium, Iron and Stainless Steel in Liquid Sodium, J. Less Common Met., 1974, 35, p 315–323

    Article  CAS  Google Scholar 

  3. K. Natesan, T.F. Kassner, and C.-Y. Li, Effect of Sodium on Mechanical Properties and Friction Wear Behaviour of LMFBR Materials, React. Technol., 1972, 19(4), p 244–277

    Google Scholar 

  4. T. Suzuki, I. Mutoh, T. Yagi, and Y. Ikenaga, Sodium Corrosion Behaviour of Austenitic Alloys and Selective Dissolution of Chromium and Nickel, J. Nucl. Mater., 1986, 139, p 97–105

    Article  CAS  Google Scholar 

  5. G.J. Lloyd, Mechanical Properties of Austenitic Stainless Steel in Sodium, At. Energy Rev., 1978, 16, p 155–208

    CAS  Google Scholar 

  6. J.L. Krankota, The Effect of Carburization in Sodium on the Mechanical Properties of Austenitic Stainless Steels, Trans. ASME, 1976, 98D(1), p 9–16

    Google Scholar 

  7. Y. Wada, T. Asagama, and R. Komine, Influence of Carburizing Sodium on Creep-Fatigue Behaviour of 304 Steel, Intern. Working Group on Fast Reactors KFK-4935, H.U. Borgstedt, Ed., Karlsruhe, Germany, 1991, p 149–159

    Google Scholar 

  8. H.U. Borgstedt and H. Huthmann, Influence of Sodium on the Creep-Rupture Behaviour of Type 304 Stainless Steel, J. Nucl. Mater., 1991, 183, p 127–136

    Article  CAS  Google Scholar 

  9. M.P. Mishra, H.U. Borgstedt, G. Frees, B. Seith, S.L. Mannan, and P. Rodriguez, Microstructural Aspects of Creep-Rupture Life of Type 316 L(N) Stainless Steel in Liquid Sodium Environment, J. Nucl. Mater., 1993, 200, p 244–255

    Article  CAS  Google Scholar 

  10. T.D. Claar, Solubilities of Metallic Elements in Liquid Sodium, React. Technol., 1970, 13(2), p 124–146

    CAS  Google Scholar 

  11. A.W. Thorley, A. Blundell, and J.A. Bradley, Solubilities of Metallic Elements in Liquid Sodium, Materials Behaviour and Physical Chemistry in Liquid metal Systems, H.U. Borgstedt, Ed., Plenum, New York, 1982, p 5–18

    Google Scholar 

  12. S. Rajendran Pillai, H.S. Khatak, and J.B. Gnanamoorthy, Formation of NaCrO2 in Sodium Systems of Fast Reactors and its Consequence on Carbon Potential, J. Nucl. Mater., 1995, 224, p 17–24

    Article  Google Scholar 

  13. S. Rajendran Pillai and H.S. Khatak, Corrosion of Austenitic Stainless Steel in Liquid Sodium, Corrosion of Austenitic Stainless Steels Mechanism Mitigation and Monitoring, H.S. Khatak and B. Raj, Ed., Narosa Publishing House, New Delhi, India, 2002, p 241–264

    Google Scholar 

  14. C. Luner, A. Cosgarea, and H.M. Feder, Solubility of Carbon in Sodium, Alkali Metal Coolants, IAEA, 1966, p 171–178

  15. H.U. Borgstedt and S.R. Pillai, The Formation of Methane by the Reaction of Coal and Hydrogen in Sodium, Proc. Liquid Metal Engg. and Technol., BNES, London, 1984, p 269–272

  16. R. Thompson, Carbon Solubility and Solute Species in Liquid Sodium, Specialists’s Meeting on Carbon in Sodium, (Harwell, UK), International Working Group on Fast Reactors, (IAEA, Vienna), IWGFR-33, 1979, p 6–12

  17. B. Longson and A.W. Thorley, Solubility of Carbon in Sodium, J. Appl. Chem., 1970, 20, p 372–379

    Article  CAS  Google Scholar 

  18. R. Ainsley, L.P. Hartlib, P.M. Holroyd, and G. Long, The Solubility of Carbon in Sodium, J. Nucl. Mater., 1974, 52, p 255–276

    Article  CAS  Google Scholar 

  19. R.L. McKisson, R.L. Eichelberger, D.C. Gehri, and J. Guon, “Sodium-Chemistry-Fundamental Studies,” Report AI-AEC-12859, Atomics International, Full Report, 1969

  20. G.K. Johnson, E.H. Van Deventer, J.P. Ackermann, W.N. Hubbard, D.W. Osborne, and H. Flotow, Enthalpy of Formation of Disodium Acetylide and of Monosodium Acetylide at 298.15 K, Heat Capacity of Disodium Acetylide From 6 to 350 K and Some Derived Thermodynamic Properties, J. Chem. Thermodyn., 1973, 5, p 57–71

    Article  CAS  Google Scholar 

  21. K. Natesan and T.F. Kassner, Thermodynamics of Carbon in Nickel, Iron-Nickel and Iron-Chromium-Nickel Alloys, Met. Trans., 1973, 4, p 2557–2566

    Article  CAS  Google Scholar 

  22. S. Rajendran Pillai and C.K. Mathews, Carbon Potential and Carbide Equilibrium in 18/8 Austenitic Steels, J. Nucl. Mater., 1987, 150, p 31–41

    Article  Google Scholar 

  23. S. Rajendran Pillai, R. Ranganathan, and C.K. Mathews, Measurement of Carbon Activity and Carbide Equilibria in AISI, 316 LN Stainless Steel, Bull. Electrochem., 1990, 6(6), p 627–629

    Google Scholar 

  24. C. Luner, H.M. Feder, and F.A. Cafasso, Carbon Transport in Liquid Sodium, Proc. Intern. Conf. Sodium Technology and Large Fast Reactor Design, ANL-7520 Part 1, Argonne National Laboratory Argonne, IL, 1968, p 455–459

  25. P.J. Rodgers, Identification of Sodium Impurity Species by Analysis of Cold Trap Contents, Proc. Intern. Conf. Sodium Technology and Large Fast Reactor Design, ANL-7520 Part 2, Argonne National Laboratory, Argonne, IL, 1968, p 25–32

  26. Yu.P. Kovalev and N.V. Gavrilova, Kinetics of the Behavior of Sodium Acetylide in a Sodium-Mineral Oil System, At. Energia, 1984, 56(4), p 231–232

    CAS  Google Scholar 

  27. D. Dutina, J.L. Simpson, and R.S. Young, Carbon Impurities in Sodium System Cold Traps, Proc. Intern. Conf. Sodium Technology and Large Fast Reactor Design, ANL-7520 Part 1, Argonne National Laboratory, Argonne, IL, 1968, p 448–454

  28. V.M. Sinclair, J.L. Drummond, and A.W Smith, “The Analysis of Carbon in Sodium”, Report TRG 1185, Full Report, 1966

  29. A.W. Thorley and M.R. Hobdell, Carbon in Sodium—A Review of Work in UK, Specialists’s Meeting on Carbon in Sodium, (Harwell, UK), International Working Group on Fast Reactors, (IAEA, Vienna), IWGFR-33, 1979, p 24–35

  30. O. Knacke, O. Kubaschewsky, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd ed., Springer, New York, 1991, p 701

    Google Scholar 

  31. E.L. Hall and C.L. Briant, Chromium Depletion in the Vicinity of Carbides in Sensitized Austenitic Stainless Steels, Met. Trans. A, 1984, 15A, p 793–811

    Article  CAS  Google Scholar 

  32. H.J. Grabke, R. Krajak, and E.M. Mueller-Lorenz, Metal Dusting of High Temperature Alloys, Werstoff Korros., 1993, 44, p 89–97

    Article  CAS  Google Scholar 

  33. H.J. Grabke, R. Krajak, E.M. Mueller-Lorenz, and S. Strauss, Metal Dusting of Nickel-Base Alloys, Werstoff Korros., 1996, 47, p 495–504

    Article  CAS  Google Scholar 

  34. C.-Y. Lin, C.-h. Chang, and W.-T. Tsai, Morphological and Microstructural Aspects of Metal Dusting on 304L Stainless Steel with Different Surface Treatments, Oxid. Met., 2004, 62(3/4), p 153–174

    Article  CAS  Google Scholar 

  35. Z. Zeng, K. Natesan, and V.A. Marooni, Investigation of Metal Dusting Mechanism of Fe-Base Alloys Using Raman Spectroscopy, X-ray Diffraction and Electron Microscopy, Oxid. Met., 2002, 58(1/2), p 147–170

    Article  CAS  Google Scholar 

  36. C.M. Chun and T.A. Ramanarayanan, Metal Dusting Corrosion of Austenitic Stainless Steel, J. Electrochem. Soc. B, 2005, 152(5), 169–177

    Google Scholar 

  37. H.J. Grabke and E.M. Mueller-Lorenz, Occurrence and Prevention of Metal-Dusting on Stainless Steel, Corrosion 2001, Paper 01373, 2001

  38. J. Zhang, K. Boddington, and D.J. Young, Oxidation, Carburization and Metal Dusting of 304 Stainless Steel in CO/CO2 and CO/H2/H2O Gas Mixtures, Corrosion, 2008, 50(11), p 3107–3115

    Article  CAS  Google Scholar 

  39. J.C. Nava Paz and H.J. Grabke, Metal Dusting, Oxid. Met., 1993, 39(5/6), p 437–456

    Article  CAS  Google Scholar 

  40. J. Juaraz-Islam, High Temperature Corrosion of Austenitic Stainless Steel Coils in a Direct Reduction Plant in Mexico, Corrosion 86, Paper 96452, 1996

  41. S.W. Dean, Jr., Estimating Metal Dusting Attack on Stainless Steel Alloys in Syngas Environments, Corrosion 2001, Paper 01384, 2001

Download references

Acknowledgment

I wish to acknowledge Dr. R.K. Dayal, Head Corrosion Science and Technology Division of this Organization for allowing me to carry out this assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran Pillai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran Pillai, S. Carbon Transfer in Sodium System Under Thermal Cycling-Possibility of “Metal Dusting”. J. of Materi Eng and Perform 20, 1140–1143 (2011). https://doi.org/10.1007/s11665-010-9763-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9763-5

Keywords

Navigation