Skip to main content

Advertisement

Log in

Comparison of Accelerated Compressive Creep Behavior of Virgin HDPE Using Thermal and Energy Approaches

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article compares two available approaches for accelerating the creep response of viscoelastic materials, such as High Density Polyethylene (HDPE), which is increasingly gaining attention for use in construction. Thermal acceleration methods to predict the tensile creep of polymers are already available. The Time-Temperature Superposition (TTS) phenomenon is the basis of several available methods, and an ASTM standard for tensile creep of geosynthetics is based on one of its derivatives, the Stepped Isothermal Method (SIM). In this article, both TTS and SIM have been adapted to study the compressive creep of virgin HDPE. An alternate approach, based on the equivalence of strain energy density (SED) between conventional constant-stress creep tests and strain-controlled stress-strain tests, is also adapted for accelerated compressive creep of HDPE. There is remarkably a good agreement among the creep behaviors obtained from conventional tests, TTS, SIM, and SED predictions for virgin HDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Kawada, A. Kobiki, J. Koyanagi, and A. Hosoi, Long Term Durability of Polymer Matrix Composites under Hostile Environments, Mater. Sci Eng. A, 2005, 412, p 159–164

    Article  Google Scholar 

  2. C. Chen, H. Salim, J.J. Bowders, E. Loher, and J. Owen, Creep Behavior of Recycled Plastic Lumber in Slope Stabilization Applications, ASCE J. Mater. Civil Eng., 2007, 19(2), p 130–138

    Article  CAS  Google Scholar 

  3. J. Huang and J. Gibson, Creep of Sandwich Beams with Polymer Foam Cores, ASCE J. Mater. Civil Eng., 1990, 2(3), p 171–182

    Article  CAS  Google Scholar 

  4. G. McClure and Y. Mohammadi, Compression Creep of Pultruded W-Glass-Reinforced-Plastic Angles, ASCE J. Mater. Civil Eng., 1995, 7(4), p 269–276

    Article  Google Scholar 

  5. S.M. Merry, J.D. Bray, and S. Yoshitomi, Axisymmetric Temperature- and Stress-Dependent Creep Response of ‘New’ and ‘Old’ HDPE, Geomembr. Geosynt. Int., 2005, 12(3), p 156–161

    Google Scholar 

  6. L. Cessna, Stress Time Superposition for Creep Data for Polypropylene and Coupled Glass Reinforced Polypropylene, Polym. Eng. Sci., 1971, 13, p 211–219

    Article  Google Scholar 

  7. R. Elleuch and W. Tak Tak, Viscoelastic Behavior of HDPE Polymer Using Tensile and Compressive Loading, J. Mater. Eng. Perform., 2006, 15(1), p 111–116

    Article  CAS  Google Scholar 

  8. L. Nielson and R. Landel. Mechanical Properties of Polymers and Composites, 2nd edn. (Marcel Dekker, New York, 1994)

  9. B. Read, P. Tomlins, and G. Dean, Physical Aging and Short Term Creep in Amorphous and Semicrystalline Polymers, Polymer, 1990, 31, p 1204–1215

    Article  CAS  Google Scholar 

  10. C. Dong, S. Zhu, M. Mizuno, and M. Hashimoto, Modeling and Prediction of Compressive Creep of Silane-Treated TiO2/High-Density Polyethylene, J. Mater. Sci. Springer, 2010, 45, p 3506–3513

    CAS  Google Scholar 

  11. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980

    Google Scholar 

  12. S. Matsuoka, Failure of Plastics, Chap. 3, W. Brostow and R. Comeliussen, Ed., Hansler Publishers, 1986, p 24–59

  13. M. Iskander and M. Hassan, State of the Practice Review in FRP Composite Piling, ASCE J. Compos. Constr., 1998, 2(3), p 116–120

    Article  Google Scholar 

  14. K. Farrag, Development of an Accelerated Creep Testing Procedure for Geosynthetics. II. Analysis, ASTM Geotech. Test. J., 1998, 21(2), p 38–44

    Google Scholar 

  15. Y.G. Hsuan and S.S. Yeo, Comparing the Creep Behavior of High Density Polyethylene Geogrid Using Two Acceleration Method, Slopes and Retaining Structures Under Seismic and Static Conditions (GSP 140), ASCE, 2005, p 166. doi:10.1061/40787(166)23

  16. J.G. Zornberg, B.R. Byler, and J.W. Knudsen, Creep of Geotextiles Using Time-Temperature Superposition Methods, ASCE J. Geotech. Geoenviron. Eng., 2004, 130(11), p 1158–1168

    Article  Google Scholar 

  17. J.S. Thornton, S.R. Allen, R.W. Thomas, and D. Sandri, The Stepped Isothermal Method for Time-Temperature Superposition and Its Application to Creep Data on Polyester Yarn, Proc. 6th Int. Conf. on Geosynthetic, Atlanta, 1998, p 699–706

  18. J.S. Thornton, J.N. Paulson, and D. Sandri, Conventional and Stepped Isothermal Methods for Characterizing Long Term Creep Strength of Polyester Geogrids, Proc. 6th Int. Conf. on Geosynthetic, Atlanta, 1998, p 691–698

  19. B.S. Bueno, M.A. Costanzi, and J.G. Zornberg, Conventional and Accelerated Creep Tests on Nonwoven Needle-Punched Geotextiles, Geosynth. Int., 2005, 12(6), p 276–287

    Article  Google Scholar 

  20. Y.G. Hsuan and S.S. Yeo, Compression Creep Behavior of Geofoam Using the Stepped Isothermal Method, Geosynthetics Research and Development in Progress (GRI-18), ASCE, 2005, p 161. doi:10.1061/40782(161)12

  21. S. Arrhenius, Theories of Solutions, Oxford University Press, 1912

  22. A. Bozorg-Haddad, “Creep of Fiber Reinforced Polymer (FRP) Pile Materials,” Dissertation, Polytechnic Institute of New York University, 2009

  23. J. Aklonisa and W. MacKnight, Introduction to Polymer Viscoelasticity, 2nd ed., Wiley, 1983, p 36–56

  24. L. Hollaway, Polymers and Polymer Composites in Construction, Thomas Telford, 1990, 275 p

  25. S. Matsuoka, H. Bair, S. Bearder, H. Kern, and J. Ryan, Analysis of Non Linear Stress Relaxation in Polymer Glasses, Polym. Eng. Sci., 1977, 18(14), p 1073–1080

    Article  Google Scholar 

  26. J.K. Lynch, “Time Dependence of the Mechanical Properties of an Immiscible Polymer Blend,” PhD. dissertation, Rutgers University, NJ, 2002

  27. K. Van Ness, T. Nosker, R. Renfree, and J. Killion, Creep Behavior of Commercially Produced Plastic Lumber, Proceedings, 56th ANTEC Conference, Society of Plastics Engineers, Atlanta, 1998, p 2916–2920

  28. S.M. Merry and J.D. Bray, Time Dependant Mechanical Response of HDPE Geomembranes, ASCE J. Geotech. Geoenviron. Eng., 1997, 123(1), p 57–65

    Article  Google Scholar 

  29. A. Pramanick and M. Sain, Nonlinear Viscoelastic Creep Characterization of HDPE-Rice Husk Composites, Polym. Polym. Compos., 2005, 13(6), p 581–598

    CAS  Google Scholar 

  30. A. Pramanick and M. Sain, Nonlinear Viscoelastic Creep Characterization of HDPE-Agro-Fiber Composites, J. Compos. Mater., 2006, 40(5), p 417–431

    Article  CAS  Google Scholar 

  31. A. Pramanick and M. Sain, Temperature-Stress Equivalency in Nonlinear Viscoelastic Creep Characterization of Thermoplastic/Agro-Fiber Composites, J. Thermoplast. Compos. Mater., 2006, 19, p 35–60

    Article  CAS  Google Scholar 

  32. L. Struik, The Mechanical and Physical Aging of Semi-Crystalline Polymers: 3, Polymer, 1989, 30, p 799–814

    Article  CAS  Google Scholar 

  33. L. Brinson and T. Gates, The Effects of Physical Aging on Long-Term Creep of Polymers and Polymer Matrix Composites, Int. J. Solids Struct., 1995, 32(6/7), p 827–846

    Google Scholar 

  34. J. Hutchinson, Physical Aging of Polymers, Progress in Polymer Scieve, Vol 20, Elsevier, 1995, p 703–760

  35. J. Sullivan, Creep and Physical Aging of Composites, Compos. Sci. Technol., 1990, 39, p 207–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding of FHWA and The Empire Development Corporation is gratefully acknowledged. The authors thank Mahsa Rejaei, Carlos Cabrerra, Hsiao Wang, and Saumil Parikh who carried out the laboratory tests described herein under the authors' supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magued Iskander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozorg-Haddad, A., Iskander, M. Comparison of Accelerated Compressive Creep Behavior of Virgin HDPE Using Thermal and Energy Approaches. J. of Materi Eng and Perform 20, 1219–1229 (2011). https://doi.org/10.1007/s11665-010-9743-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9743-9

Keywords

Navigation