Skip to main content
Log in

Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article investigates superplastic forming (SPF) technique in conjunction with finite element (FE) simulation applied to dental repair. The superplasticity of Ti-6Al-4V alloys has been studied using a uniquely designed five-hole test with the aim of obtaining the modeled grain size and the flow stress parameters. The data from the five-hole test are subsequently put into the FE program for the simulation of a partial upper denture dental prosthesis (PUD4). The FE simulation of the PUD4 is carried out to set up appropriate input parameters for pressing due to the SPF process being fully automatic controlled. A variety of strain rates ranging from 2.4 × 10−5 to 1 × 10−3 s−1 are selected for the characterization of superplastic properties of the alloy. The Superflag FE program is used to generate an appropriate pressure-time profile and provide information on thickness, grain size, and grain growth rate distribution. Both membrane elements and solid elements have been adopted in the simulation and the results from both types of elements are compared. An evaluation of predicted parameters for the SPF of the prosthesis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Nazzal, M.K. Khraisheh, and F.K. Abu-Farha, The Effect of Strain Rate Sensitivity Evolution on Deformation Stability During Superplastic Forming, J. Mater. Proc. Technol., 2007, 191(1–3), p 189–192

    Article  CAS  Google Scholar 

  2. J. Bonet, A. Gil, R.D. Wood, R. Said, and R.V. Curtis, Simulating Superplastic Forming, Comput. Methods Appl. Mech. Eng., 2006, 195(48–49), p 6580–6603

    Article  Google Scholar 

  3. D. Cheng, J. Huang, X. Zhao, and H. Zhang, Microstructure and Superplasticity of Laser Welded Ti-6Al-4V Alloy, Mater. Des., 2010, 31(1), p 620–623

    Article  CAS  Google Scholar 

  4. P. Comley, Manufacturing Advantages of Superplastically Formed Fine-grain Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2004, 13(6), p 660–664

    Article  CAS  Google Scholar 

  5. R.D. Wood, R.V. Curtis, J. Bonet, R. Said, A. Gil, D. Garriga-Majo, and X. Li, Computer Simulation of Superplastic Forming in Restorative Dentistry, Mater. Sci. Forum, 2004, 447–448, p 131–138

    Article  Google Scholar 

  6. R.V. Curtis, The Suitability of Dental Investment Materials as Dies for Superplastic Forming of Medical and Dental Prostheses, Mater. Sci. Eng. Technol., 2008, 39(4–5), p 322–326

    CAS  Google Scholar 

  7. R.V. Curtis and A. Gil, Superplastic Forming of Dental and Maxillofacial Prostheses, Dental Biomaterials: Imaging, testing and modelling, 1st ed., Woodhead Publishing Ltd, Cambridge, UK, 2008, p 428–474

    Google Scholar 

  8. D. Garriga-Majo, R.J. Paterson, R.V. Curtis, R. Said, R.D. Wood, and J. Bonet, Optimisation of the Superplastic Forming of a Dental Implant for Bone Augmentation Using Finite Element Simulations, Dental Materials: Official Publication of the Academy of Dental Materials, 2004, 20(5), p 409–418

    CAS  Google Scholar 

  9. G. Giuliano, Constitutive Equation for Superplastic Ti-6Al-4V Alloy, Mater. Des., 2008, 29(7), p 1330–1333

    Article  CAS  Google Scholar 

  10. J. Pilling and N. Ridley, Superplasticity in Crystalline Solids, Institute of Metals, Camelot Press plc, Southampton, UK, 1989

    Google Scholar 

  11. D.A. Mosher and P.R. Dawson, A State Variable Constitutive Model for Superplastic Ti-6Al-4V Based on Grain Size, J. Eng. Mater. Technol., 1996, 118, p 162–168

    Article  CAS  Google Scholar 

  12. J. Cheong, J. Lin, and A.A. Ball, Modeling the Effects of Grain-size Gradients on Necking in Superplastic Forming, J. Mater. Proc. Technol., 2002, 5854, p 1–9

    Article  Google Scholar 

  13. F. Pitt and M. Ramulu, Influence of Grain Size and Microstructure on Oxidation Rates in Titanium Alloy Ti-6Al-4V Under Superplastic Forming Conditions, J Mater. Eng. Perform., 2004, 13(6), p 727–734

    Article  CAS  Google Scholar 

  14. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee, Superplastic Behaviour of Ultrafine-Grained Ti-6A1-4V Alloys, Mater. Sci. Eng. A, 2002, 323, p 318–325

    Article  Google Scholar 

  15. W. Han, K. Zhang, and G. Wang, Superplastic Forming and Diffusion Bonding for Honeycomb Structure of Ti-6Al-4V Alloy, J. Mater. Proc. Technol., 2007, 183(2–3), p 450–454

    Article  CAS  Google Scholar 

  16. F.U. Enikeev, Determination of the Value of the Threshold Stress for Superplastic Flow, Mater. Sci. Eng. A, 2000, 276(1–2), p 22–31

    Google Scholar 

  17. R.D. Wood and J. Bonet, A Review of the Numerical Analysis of Superplastic Forming, J. Mater. Proc. Technol., 1996, 60, p 45–53

    Article  Google Scholar 

  18. J. Bonet, Error Estimators and Enrichment Procedures for the Finite Element Analysis of Thin Sheet Large Deformation Processes, Int. J. Numer. Methods Eng., 1994, 37, p 1573–1591

    Article  Google Scholar 

  19. H.L. Xing and Z.R. Wang, Finite-Element Analysis and Design of Thin Sheet Superplastic Forming, J. Mater. Proc. Technol., 1997, 68, p 1–7

    Article  Google Scholar 

  20. K.F. Zhang, G.F. Wang, D.Z. Wu, and Z.R. Wang, Research on the Controlling of the Thickness Distribution in Superplastic Forming, J. Mater. Proc. Technol., 2004, 151(1–3), p 54–57

    Article  Google Scholar 

  21. S.G. Luckey, Jr., P.A. Friedman, and K.J. Weinmann, Correlation of Finite Element Analysis to Superplastic Forming Experiments, J. Mater. Proc. Technol., 2007, 194(1–3), p 30–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Engineering and Physical Science Research Council (EPSRC), UK for the financial aid to this work. Drs. R. V. Curtis and A. S. Juszczyk are gratefully acknowledged for their technical help and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Soo, S. Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis. J. of Materi Eng and Perform 20, 341–347 (2011). https://doi.org/10.1007/s11665-010-9710-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9710-5

Keywords

Navigation