Skip to main content
Log in

A New Three-Parameter Model for Predicting Fatigue Crack Initiation Life

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on the idea that the fatigue damage is caused by the cyclic damage strain, a concept of the critical damage quantity is introduced and a new three-parameter model is developed. The model contains three material performance parameters, i.e., the fatigue ductility coefficient, the fatigue ductility exponent, and the theoretical strain endurance limit. The fatigue ductility coefficient reflects the existence of the critical damage quantity. The fatigue ductility exponent shows the damage resistance ability of the material. And the theoretical strain endurance limit represents the existence of the critical cyclic strain. By using the proposed model, the fatigue crack initiation life of metallic materials can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

N i :

fatigue crack initiation life

Δεp :

cyclic plastic strain range

ΔεD :

cyclic damage strain range

c :

fatigue ductility exponent

\( \upsigma_{\text{f}}^{\prime } \) :

fatigue strength coefficient

εf :

fracture ductility

σ−1 :

stress endurance limit

Δε:

cyclic strain range

Δεe :

cyclic elastic strain range

Δεc :

theoretical strain endurance limit

\( \upvarepsilon_{\text{f}}^{\prime } \) :

fatigue ductility coefficient

b :

fatigue strength exponent

σb :

ultimate tensile strength

E :

Young’s modulus

References

  1. N.E. Dowling, W.R. Brose, and W.K. Wilson, Notched Member Fatigue Life Predictions by the Local Strain Approach, Adv. Eng. Fatigue Under Complex Loading, 1977, 6, p 55–84

    Google Scholar 

  2. S.S. Manson, Fatigue, A Complex Subject-Some Simple Approximation, Exp. Mech., 1965, 5(7), p 193–226

    Article  Google Scholar 

  3. S.S. Manson, Interfaces Between Fatigue, Creep and Fracture, Proceedings of the First International Conference on Fracture, Sendai, Japan, Japanese Society for Strength and Fracture of Materials, 1966, p 1378–1432

  4. S. Kocanda, Fatigue Failure of Metals, Alphen aan den Rijn, Sijthoff-Noordhoff International Publishers, The Netherlands, 1978

  5. X.-L. Zheng, Quantitative Theory of Metal Fatigue, Northwestern Polytechnic University Publishing House, Xi’an, China, 1994 (in Chinese)

  6. X.-L. Zheng, Modeling Fatigue Crack Initiation Life, Int. J. Fatigue, 1993, 15(6), p 461–466

    Article  CAS  Google Scholar 

  7. X.-L. Zheng, On Some Basic Problems of Fatigue Research in Engineering, Int. J. Fatigue, 2001, 23, p 751–766

    Article  Google Scholar 

  8. X.-L. Zheng, A Further Study on Fatigue Crack Initiation Life-Mechanics Model for Fatigue Initiation, Int. J. Fatigue, 1986, 8(1), p 17–21

    Article  Google Scholar 

  9. X.-L. Zheng and B. Lu, Fatigue Formula Under Cyclic Strain Fatigue and Fracture Mechanics, Proceedings of the 1st International Conference, Localized Damage Computer Aided Assessment and Control, Portsmouth, June 1990, p 175–184

  10. L.F. Coffin, Jr., and N.Y. Schenectady, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Trans. ASME, 1954, 76, p 931–950

    CAS  Google Scholar 

  11. L.F. Coffin, Jr, and J.F. Tavernelli, The Cyclic Straining and Fatigue of Metals, Trans. Metall. Soc. Am. Inst. Mining Metall. Petroleum Eng., 1959, 215, p 794–807

    CAS  Google Scholar 

  12. N.E. Frost, K.J. Marsh, and L.P. Pook, Metal Fatigue, Clarendon Press, Oxford, 1974

    Google Scholar 

  13. S.I. Hong and C. Larid, Fatigue Crack Initiation and Growth Behavior of Cu-16% Atom Aluminum Single Crystals, Fatigue Fract. Eng. Mater. Struct., 1991, 14, p 143–169

    Article  Google Scholar 

  14. Science and Technology Committee of Aeronautic Engineering Department, Handbook of Strain Fatigue Analysis, Science Publishing House, Beijing, China, 1987 (in Chinese)

  15. T.H. Topper, R.M. Wetzel, and J.D. Morrow, Neuber’s Rule Applied to Fatigue of Notched Specimens, J. Mater., 1969, 4(1), p 200–209

    Google Scholar 

  16. T. Endo and J.D. Morrow, Cyclic Stress-Strain and Fatigue Behavior of Representative Aircraft Metals, J. Mater., 1969, 4(1), p 159–175

    Google Scholar 

  17. L. Tucker, S. Dowling, and L. Camillo, Accuracy of Simplified Fatigue Prediction Methods, Adv. Eng. Fatigue Under Complex Loading, 1977, 6, p 137–144

    Google Scholar 

  18. C.E. Feltner and M.R. Mitchell, Basic Research on the Cyclic Deformation and Fracture Behaviour of Materials, Manual on Low Cycle Fatigue Testing, ASTM STP 465, Philadelphia, ASTM, 1969, p 27–66

  19. D.E. Martin, An Energy Criterion for Low Cycle Fatigue, J. Basic Eng. Trans. ASME, 1961, Dec, p 565–571

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Sun, Q., Li, C. et al. A New Three-Parameter Model for Predicting Fatigue Crack Initiation Life. J. of Materi Eng and Perform 20, 169–176 (2011). https://doi.org/10.1007/s11665-010-9667-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9667-4

Keywords

Navigation