Skip to main content
Log in

The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum-magnesium (Al-Mg) alloys have been widely used in diverse applications ranging from automotive bodies to food processing industries because of their excellent high-strength-to-weight ratio, corrosion resistance, and recyclability potential. The formability of these alloys is decreased at room temperature (RT) and is related with the strain-rate sensitivity. This study presents the effect of strain-rate sensitivity on formability of AA 5754-O alloy sheet at a test temperature range of −60 to 250 °C by duplicate tensile test at different strain rates. The test results indicated that the formability change with positive or negative strain-rate sensitivity values. It was observed that the strain-rate sensitivity values increased at negative temperatures with respect to RT. The best formability condition for this alloy in the test ranges was observed at 250 °C and 0.0016 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Spencer, S.F. Corbin, and D.J. Lloyd, Notch Fracture Behaviour of 5754 Automotive Aluminium Alloys, Mater. Sci. Eng. A, 2002, 332(1–2), p 81–90

    Article  Google Scholar 

  2. R.A. Ayres and M.L. Wenner, Enhanced Ductility in an Aluminum-4 pct Magnesium Alloy at Elevated Temperature, Metall. Trans. A Phys. Metall. Mater. Sci., 1977, 8, p 487–492

    Article  Google Scholar 

  3. P. Malek, K. Turba, M. Slamova, and I. Drbohlav, High Temperature Deformation of a Twin-Roll Cast AlMg3 Alloy, Mater. Character., 2008, 59, p 1046–1050

    Article  CAS  Google Scholar 

  4. A.M. Hammad, K.K. Ramadan, and M.A. Nasr, Mechanical Properties of Al-Mg Alloys at Elevated Temperatures. Part 1. High Temperature Deformation of Pure Al and Al-Mg Zeitschrift Fuer, Metall./Mater. Res. Adv. Tech., 1989, 80(3), p 173–177

    CAS  Google Scholar 

  5. R.C. Picu, G. Vincze, J.J. Gracio, and F. Barlat, Effect of Solute Distribution on the Strain Rate Sensitivity of Solid Solutions, Scr. Mater., 2006, 54, p 71–75

    Article  CAS  Google Scholar 

  6. K.C. Chan and G.Q. Tong, Strain Rate Sensivity of a High-Strain-Rate Superplastic Al6061/20SiCw Composite Under Uniaxial and Equibiaxial Tension, Mater. Lett., 2001, 5, p 389–395

    Article  Google Scholar 

  7. D. Li, Sheet Steel Formability, American Iron and Steel Institute, Washington, DC, 1984

  8. X.X. Yao, The Strain Rate Sensitivity of Flow Stress and Work-Hardening Rate in a Hot Deformed Al-1.0Mg Alloy, J. Mater. Sci. Lett., 2000, 19, p 743–744

    Article  CAS  Google Scholar 

  9. H.P. Stüwe and P. Les, Strain Rate Sensitivity of Flow Stress at Large Strains, Acta Mater., 1998, 46, p 6375–6380

    Article  Google Scholar 

  10. H. Halim, D.S. Wilkinson, and M. Niewczas, The Portvein-Le Chatelier (PLC) Effect and Shear Band Formation in an AA5754 Alloy, Acta Mater., 2007, 55, p 4151–4160

    Article  CAS  Google Scholar 

  11. N. Abedrabbo, F. Pourbograt, and J. Carsley, Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models, Int. J. Plast., 2007, 23, p 841–875

    Article  CAS  Google Scholar 

  12. R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng. A, 2005, 390, p 334–343

    Article  Google Scholar 

  13. J.E. King, C.P. You, and J.F. Knott, Serrated Yielding and the Localized Shear Failure Mode in Aluminium-Alloys, Acta Mater., 1981, 29, p 1553–1566

    Article  CAS  Google Scholar 

  14. J. Kang, D.S. Wilkinson, M. Jain, J.D. Embury, A.J. Beaudoin, S. Kim, R. Mishira, and A.K. Sachdev, On the Sequence of Inhomogeneous Deformation Processes Occurring During Tensile Deformation of Strio Cast AA5754, Acta Mater., 2006, 54, p 209–218

    Article  CAS  Google Scholar 

  15. M. Li and D.J. Lege, Serrated Flow and Surface Markings in Aluminum Alloys, J. Eng. Mater. Technol., 1998, 120, p 48–56

    Article  CAS  Google Scholar 

  16. M. Lebyodkin, Y. Brechet, Y. Estrin, and L. Kubin, Behaviour and Strain Localization Patterns in the Portevin-Le Chatelier Effect, Acta Mater., 1996, 44, p 4531–4541

    Article  CAS  Google Scholar 

  17. M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, and L.P. Kubin, Multifractal Burst in the Spatio-Temporal Dynamics of Jerky Flow, Phys. Rev. Lett., 2001, 87(16), p 165508

    Article  CAS  Google Scholar 

  18. P.G. McCormick, Acta Metall., 1971, 19, p 463

    Article  CAS  Google Scholar 

  19. P.G. McCormick and C.P. Ling, Numerical Modeling of the Portevin-Le Chatellier Effect, Acta Mater., 1995, 43, p 1969–1977

    Article  CAS  Google Scholar 

  20. S. Kok, A.J. Beaudoin, D.A. Tortorelli, and M. Lebyodkin, A Finite Element Model for the Portevin-Le Chatellier Effect Based on Polycrystal Plasticity, Model Simul. Mater. Sci. Eng., 2002, 10, p 745–763

    Article  CAS  Google Scholar 

  21. M. Jain, D.J. Lloyd, and S.R. MacEwen, Hardening Laws, Surface Roughness and Biaxial Tensile Limit Strains of Sheet Aluminium Alloys, Int. J. Mech. Sci., 1996, 38, p 219–232

    Article  Google Scholar 

  22. J. Kang, D.S. Wilkinson, J. David Embury, Mukesh Jain, and A.J. Beaudoin, Effect of Type-B Portevin-Le Chatelier Bands on the Onset of Necking in Uniaxial Tension of Strip Cast AA5754 Sheets, Scr. Mater., 2005, 53, p 499–503

    Article  CAS  Google Scholar 

  23. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Elevated Temperature Mechanical Properties of a 5056 Al-Mg Alloy Processed by Equal-Channel-Angular-Extrusion, Scr. Mater., 1997, 36(6), p 699–705

    Article  CAS  Google Scholar 

  24. A.P. Reynolds and Q. Li, The Effect of Elevated Temperature Exposure on Fracture Resistance and Fracture Path in a Precipitation Strengthened Aluminum Alloy, Scr. Mater., 1996, 34(11), p 1803–1808

    Article  CAS  Google Scholar 

  25. S.-S. Kim, M.J. Haynes, and R.P. Gangloff, Localized Deformation and Elevated-Temperature Fracture of Submicron-Grain Aluminum with Dispersoids, Mater. Sci. Eng., 1995, A203(1–2), p 256–271

    CAS  Google Scholar 

  26. D.-Y. Park and M. Niewczas, Plastic Deformation of Al and AA5754 Between 4.2 K and 295 K, Mater. Sci. Eng. A, 2008, 491, p 88–102

    Article  CAS  Google Scholar 

  27. R. Narayanasamy, R. Ponalagusamy, and S. Raghuraman, The Effect of Strain Rate Sensitivity on Theoretical Prediction of Limiting Draw Ratio for Cylindrical Cup Drawing Process, Mater. Design, 2008, 29(4), p 884–890

    Article  CAS  Google Scholar 

  28. ASTM E8/E8M-08, “Standard Test Methods for Tension Testing of Metallic Materials,” American Society for Testing and Materials, Vol 3.01, doi:10.1520/E0008_E0008M-08, www.astm.org

  29. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, and C. Kim, Metall. Mater. Trans. A, 1996, 27A, p 1889–1898

    Article  CAS  Google Scholar 

  30. E. Romhanji, M. Dudukovska, and D. Glišić, The Effect of Temperature on Strain-Rate Sensitivity in High Strength Al-Mg Alloy Sheet, J. Mater. Process. Technol., 2002, 125–126, p 193–198

    Article  Google Scholar 

  31. M.M. Krishtal, Strain Rate Sensistivity and Strain Macrolocalization in Serrated Yielding of Al-Mg Alloys, Metal Sci. Heat Treat., 1997, 39(9), p 26–30

    Article  Google Scholar 

  32. J. Ibanez, G. Gonzalez-Doncel, and F. Carreno, Comment on the Strain Rate Sensitivity of Flow Stress and Work-Hardening Rate in a Hot Deformed Al-1.0Mg Alloy, J. Mater. Sci. Lett., 2001, 20, p 1185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK). Project number: 106M058, Title: “Experimental and Theoretical Investigations of The Effects of Temperature and Deformation Speed on Formability.” TÜBİTAK support is profoundly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrettin Ozturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, F., Pekel, H. & Halkaci, H.S. The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures. J. of Materi Eng and Perform 20, 77–81 (2011). https://doi.org/10.1007/s11665-010-9652-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9652-y

Keywords

Navigation